首页> 外文期刊>Physics of plasmas >Experimental study of parametric dependence of electron-scale turbulence in a spherical tokamak
【24h】

Experimental study of parametric dependence of electron-scale turbulence in a spherical tokamak

机译:球形托卡马克中电子尺度湍流参数相关性的实验研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Electron-scale turbulence is predicted to drive anomalous electron thermal transport. However, experimental study of its relation with transport is still in its early stage. On the National Spherical Tokamak Experiment (NSTX), electron-scale density fluctuations are studied with a novel tangential microwave scattering system with high radial resolution of ±2 cm. Here, we report a study of parametric dependence of electron-scale turbulence in NSTX H-mode plasmas. The dependence on density gradient is studied through the observation of a large density gradient variation in the core induced by an edge localized mode (ELM) event, where we found the first clear experimental evidence of density gradient stabilization of electron-gyro scale turbulence in a fusion plasma. This observation, coupled with linear gyro-kinetic calculations, leads to the identification of the observed instability as toroidal electron temperature gradient (ETG) modes. It is observed that longer wavelength ETG modes, k ⊥ ρ _s ? 10 (ρ _s is the ion gyroradius at electron temperature and k is the wavenumber perpendicular to local equilibrium magnetic field), are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in electron thermal diffusivity. Comparisons with nonlinear ETG gyrokinetic simulations show ETG turbulence may be able to explain the experimental electron heat flux observed before the ELM event. The collisionality dependence of electron-scale turbulence is also studied by systematically varying plasma current and toroidal field, so that electron gyroradius (ρ _e), electron beta (β _e), and safety factor (q _(95)) are kept approximately constant. More than a factor of two change in electron collisionality, ν _e *, was achieved, and we found that the spectral power of electron-scale turbulence appears to increase as ν _e * is decreased in this collisonality scan. However, both linear and nonlinear simulations show no or weak dependence with the electron-ion collision frequency, ν ~(e/i). Instead, other equilibrium parameters (safety factor, electron density gradient, for example) affect ETG linear growth rate and electron thermal transport more than ν ~(e/i) does. Furthermore, electron heat flux predicted by the simulations is found to have an order-of-magnitude spatial variation in the experimental measurement region and is also found to be much smaller than experimental levels except at one radial location we evaluated. The predicted electron heat flux is shown to be strongly anti-correlated with density gradient, which varies for a factor of three in the measurement region, which is in agreement with the density gradient dependence study reported in this paper.
机译:预计电子尺度的湍流会驱动异常的电子热传输。但是,与运输的关系的实验研究仍处于早期阶段。在国家球形托卡马克实验(NSTX)上,使用新颖的切向微波散射系统研究了电子尺度密度波动,该系统具有±2 cm的高径向分辨率。在这里,我们报告了对NSTX H型等离子体中电子尺度湍流的参数依赖性的研究。通过观察由边缘局部模式(ELM)事件引起的岩心中较大的密度梯度变化来研究对密度梯度的依赖性,在该实验中,我们发现了电子陀螺规模湍流中密度梯度稳定的第一个清晰实验证据。融合等离子体。该观察结果与线性陀螺动力学计算相结合,导致将观察到的不稳定性识别为环形电子温度梯度(ETG)模式。观察到更长的波长ETG模式,k⊥ρss? 10(ρ_s是电子温度下的离子陀螺半径,k是垂直于局部平衡磁场的波数),通过密度梯度最稳定,并且该稳定伴随着约两倍的电子热扩散率降低。与非线性ETG陀螺动力学模拟的比较表明,ETG湍流可能可以解释ELM事件之前观察到的实验电子热通量。还通过系统地改变等离子体电流和环形场来研究电子尺度湍流的碰撞性依赖性,从而使电子陀螺半径(ρ_e),电子β(β_e)和安全系数(q _(95))保持近似恒定。 。达到了两个以上的电子碰撞性变化的因子ν_e *,并且我们发现,在这种碰撞扫描中,随着ν_e *的减小,电子尺度湍流的谱功率似乎会增加。但是,线性和非线性模拟都没有显示出对电子离子碰撞频率ν〜(e / i)的依赖性,甚至没有。取而代之的是,其他平衡参数(例如,安全系数,电子密度梯度)对ETG线性增长率和电子热传递的影响大于ν〜(e / i)。此外,发现通过模拟预测的电子热通量在实验测量区域中具有数量级的空间变化,并且除我们评估的一个径向位置以外,还发现其远小于实验水平。结果表明,预测的电子热通量与密度梯度高度相关,在测量区域中,密度梯度的变化为三倍,这与本文报道的密度梯度依赖性研究相符。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号