首页> 外文期刊>Physical Review, A. Atomic, molecular, and optical physics >Attosecond XUV absorption spectroscopy of doubly excited states in helium atoms dressed by a time-delayed femtosecond infrared laser
【24h】

Attosecond XUV absorption spectroscopy of doubly excited states in helium atoms dressed by a time-delayed femtosecond infrared laser

机译:飞秒红外激光对氦原子中双激发态的阿托秒XUV吸收光谱

获取原文
获取原文并翻译 | 示例
           

摘要

In the present paper, we investigate the time-resolved transient absorption spectroscopy of doubly excited states of helium atoms by solving the time-dependent two-electron Schrodinger equation numerically based on a one-dimensional model. The helium atoms are subjected to an extreme ultraviolet (XUV) attosecond pulse and a time-delayed infrared (IR) few-cycle laser pulse. A superposition of doubly excited states populated by the XUV pulse is identified, which interferes with the direct ionization pathway leading to Fano resonance profiles in the photoabsorption spectrum. In the presence of an IR laser, however, the Fano line profiles are strongly modified: A shifting, splitting, and broadening of the original absorption lines is observed when the XUV attosecond pulse and infrared few-cycle laser pulse overlap in time, which is in good agreement with recent experimental results. At certain time delays, we observe symmetric Lorentz, inverted Fano profiles, and even negative absorption cross sections indicating that the XUV light can be amplified during the interaction with atoms. We further prove that the above pictures are general for different doubly excited states by suitably varying the frequency of the IR field to coherently couple the corresponding states.
机译:在本文中,我们通过基于一维模型对时间相关的两电子薛定inger方程进行数值求解,研究了氦原子双激发态的时间分辨瞬态吸收光谱。氦原子受到极紫外(XUV)阿秒脉冲和延时红外(IR)少周期激光脉冲的影响。确定了由XUV脉冲构成的双激发态的叠加,这会干扰直接电离途径,从而导致光吸收光谱中的Fano共振曲线。但是,在存在红外激光的情况下,Fano线的轮廓被强烈修改:当XUV阿秒脉冲和红外短周期激光脉冲在时间上重叠时,观察到原始吸收线发生了位移,分裂和展宽。与最近的实验结果非常吻合。在某些时间延迟下,我们观察到对称的洛伦兹,倒Fano轮廓,甚至是负吸收截面,这表明XUV光可以在与原子相互作用的过程中被放大。我们进一步证明,通过适当改变红外场的频率以相干耦合相应的状态,上述图片对于不同的双激发态是通用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号