首页> 外文期刊>Physical Review, A. Atomic, molecular, and optical physics >Prospects for storage and retrieval of a quantum-dot single photon in an ultracold ~(87)Rb ensemble
【24h】

Prospects for storage and retrieval of a quantum-dot single photon in an ultracold ~(87)Rb ensemble

机译:超冷〜(87)Rb系中量子点单光子的存储和恢复前景

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Epitaxially grown quantum dots (QDs) are promising sources of nonclassical states of light such as single photons and entangled photons. However, in order for them to be used as a resource for long-distance quantum communication, distributed quantum computation, or linear optics quantum computing, these photons must be coupled efficiently to long-lived quantum memories as part of a quantum repeater network. Here, we theoretically examine the prospects for efficient storage and retrieval of a QD-generated single photon with a 1-ns lifetime in a multilevel atomic system. We calculate using an experimentally demonstrated optical depth of 150 that the storage (total) efficiency can exceed 46% (28%) in a dense, ultracold ensemble of ~(87)Rb atoms. Furthermore, we find that the optimal control pulse required for storage and retrieval can be obtained using a diode laser and an electro-optic modulator rather than a mode-locked, pulsed laser source. Increasing the optical depth, for example, by using Bose-condensed ensembles or an optical cavity, can increase the efficiencies to near unity. Aside from enabling a high-speed quantum network based on QDs, such an efficient optical interface between an atomic ensemble and a QD can also lead to entanglement between collective spin-wave excitations of atoms and the spin of an electron or hole confined in the QD.
机译:外延生长的量子点(QD)是光的非经典状态的有希望的来源,例如单光子和纠缠光子。但是,为了使它们用作远程量子通信,分布式量子计算或线性光学量子计算的资源,必须将这些光子有效地耦合到作为量子中继器网络一部分的长寿命量子存储器。在这里,我们从理论上检查了在多级原子系统中有效存储和检索QD生成的具有1ns寿命的单光子的前景。我们使用实验证明的150的光学深度来计算,在〜(87)Rb原子的致密,超冷集合中,存储(总)效率可以超过46%(28%)。此外,我们发现可以使用二极管激光器和电光调制器而不是锁模脉冲激光源来获得存储和检索所需的最佳控制脉冲。例如,通过使用Bose凝聚体或光学腔体来增加光学深度可以使效率提高到接近统一。除了启用基于量子点的高速量子网络外,原子集合体和量子点之间如此有效的光学界面还可能导致原子的集体自旋波激发与电子或空穴在量子点内的自旋之间的纠缠。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号