首页> 外文期刊>Physical Review, A. Atomic, molecular, and optical physics >Optimal control of the silicon-based donor-electron-spin quantum computing
【24h】

Optimal control of the silicon-based donor-electron-spin quantum computing

机译:硅基施主电子自旋量子计算的最优控制

获取原文
获取原文并翻译 | 示例
           

摘要

We demonstrate how gradient ascent pulse engineering optimal control methods can be implemented ondonor-electron-spin qubits in Si semiconductors with an architecture complementary to the original Kane'sproposal. We focus on the high-fidelity-controlled-NOT (cNoT) gate and explicitly find its digitized controlsequences by optimizing its fidelity over the external controls of the hyperfine A and exchange J interactions.This high-fidelity-cNoT gate has an error of about 10-6, below the error threshold required for fault-tolerantquantum computation, and its operation time of 100 ns is about three times faster than 297 ns of theproposed global control scheme. It also relaxes significantly the stringent distance constraint of twoneighboring donor atoms of 10-20 nm as reported in the original Kane's proposal to about 30 nm in whichsurface A and J gates may be built with current fabrication technology. The effects of the control voltagefluctuations, the dipole-dipole interaction, and the electron-spin decoherence on the CNOT gate fidelity are alsodiscussed.
机译:我们演示了如何在硅半导体中的施主电子自旋量子位上实现梯度上升脉冲工程最优控制方法,并且该结构可以与原始凯恩的建议互补。我们专注于高保真控制NOT(cNoT)门,并通过优化其在超精细A的外部控件上的保真度并交换J交互来显式地找到其数字化控制序列。此高保真cNOT门的误差约为10-6,低于容错量子计算所需的错误阈值,其100 ns的操作时间比拟议的全局控制方案的297 ns快三倍。如原始凯恩的提议中所报告的,这也极大地放松了相邻的两个供体原子10-20 nm的严格距离约束,使大约30 nm可以用当前的制造技术建造表面A和J栅极。还讨论了控制电压波动,偶极-偶极相互作用以及电子自旋退相干对CNOT栅极保真度的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号