首页> 外文学位 >Geometry, optimal control and quantum computing.
【24h】

Geometry, optimal control and quantum computing.

机译:几何,最佳控制和量子计算。

获取原文
获取原文并翻译 | 示例

摘要

Quantum computation promises solution to problems that are hard to solve by classical computers. The efficient construction of quantum circuits that can solve interesting tasks is a fundamental challenge in the field. Such efficient construction also reduces decoherence losses in physical implementations of quantum algorithms by reducing interaction time with the environment. Therefore, finding time-optimal ways to synthesize unitary transformations from available physical resources is a problem of both fundamental and practical interest in quantum information processing. In this thesis, we study these problems in general mathematical frame as well as in some concrete real physical settings. We give a complete characterization of all the unitary transformations that can be synthesized in a given time for a two-qubit system in presence of general time varying coupling tensor, assuming that the local unitary transformation on two qubits can be performed arbitrarily fast (on a time scale governed by the strength of couplings). A generalization of this result on general Lie group is also presented. We then give the time optimal ways for coherence transfer on three linearly coupled spin chain, and an efficient way of constructing a CNOT gate between two indirectly coupled spins.
机译:量子计算有望解决经典计算机难以解决的问题。能解决有趣任务的量子电路的有效构造是该领域的基本挑战。这种有效的构造还通过减少与环境的交互时间来减少量子算法的物理实现中的相干损失。因此,寻找时间最佳的方式来从可用的物理资源中合成单一变换是量子信息处理中基本和实际的问题。在本文中,我们在一般的数学框架以及某些具体的实际物理环境中研究了这些问题。我们给出了在存在一般时变耦合张量的情况下,在给定时间内对于两个量子位系统可以合成的所有unit变换的完整表征,假设可以在两个量子位上任意快速地执行局部transformation变换。时间尺度由联轴器的强度决定)。还介绍了该结果在一般李群上的推广。然后,我们给出了三个线性耦合自旋链上相干转移的时间最优方法,以及在两个间接耦合自旋之间构建CNOT门的有效方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号