首页> 外文期刊>Physical Review, A. Atomic, molecular, and optical physics >Nanoscale stratification of optical excitation in self-interacting one-dimensional arrays
【24h】

Nanoscale stratification of optical excitation in self-interacting one-dimensional arrays

机译:自相互作用一维阵列中光激发的纳米分层

获取原文
获取原文并翻译 | 示例
           

摘要

The major assumption of the Lorentz-Lorenz theory about uniformity of local fields and atomic polarizationin dense material does not hold in finite groups of atoms, as we reported earlier [A. E. Kaplan and S. N.Volkov, Phys. Rev. Lett. 101, 133902 (2008)]. The uniformity is broken at subwavelength scale, where thesystem may exhibit strong stratification of local field and dipole polarization, with the strata period being muchshorter than the incident wavelength. In this paper, we further develop and advance that theory for the mostfundamental case of one-dimensional arrays, and study nanoscale excitation of so-called "locsitons" (local fieldexcitations) and their standing waves (strata) that result in size-related resonances and related large fieldenhancement in finite arrays of atoms. The locsitons may have a whole spectrum of spatial frequencies, rangingfrom long waves, to an extent reminiscent of ferromagnetic domains, to supershort waves, with neighboringatoms alternating their polarizations, which are reminiscent of antiferromagnetic spin patterns. Of great interestis the different kind of "hybrid" mode of excitation, greatly departing from any magnetic analogies. We alsostudy differences between Ising-type near-neighbor approximation and the case where each atom interacts withall other atoms in the array. We find an infinite number of "exponential eigenmodes" in the lossless system inthe latter case. At certain "magic" numbers of atoms in the array, the system may exhibit self-induced (butlinear in the field) cancellation of resonant local-field suppression. We also studied nonlinear modes of locsi-tons and found optical bistability and hysteresis in an infinite array for the simplest modes.
机译:劳伦兹-洛伦茨(Lorentz-Lorenz)理论中关于局部场的均匀性和致密材料中原子极化的主要假设并不局限于原子的有限组中,正如我们先前报道的那样[A. E.Kaplan和S.N.Volkov,物理学。牧师101,133902(2008)]。在亚波长范围内,均匀性被破坏,在该波长下,系统可能表现出强烈的局部场分层和偶极极化,并且层周期比入射波长短得多。在本文中,我们将进一步发展和推广有关一维阵列最基本情况的理论,并研究所谓的“定位子”(局部场激发)及其驻波(地层)的纳米级激发,这些激发会引起与尺寸有关的共振以及有限原子阵列中的相关大场增强。这些位置可能具有整个空间频率频谱,从长波到使人联想到铁磁域的范围,再到超短波,而相邻原子交替极化,这使人联想到反铁磁自旋模式。引起极大关注的是不同种类的“混合”激发模式,大大偏离了任何磁性类比。我们还研究了Ising型近邻近似与每个原子与阵列中所有其他原子相互作用的情况之间的差异。在后一种情况下,我们在无损系统中发现了无数个“指数本征模”。在阵列中一定数量的“魔术”原子上,系统可能表现出共振局部场抑制的自感应(场中为线性)抵消。我们还研究了位置的非线性模式,并在最简单模式的无限阵列中发现了光学双稳态和磁滞现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号