首页> 外文会议>IUS;IEEE International Ultrasonics Symposium >One-dimensional optoacoustic receive array employing chirped excitation and GPU-based beamforming
【24h】

One-dimensional optoacoustic receive array employing chirped excitation and GPU-based beamforming

机译:一维光声接收阵列,采用chi激励和基于GPU的波束成形

获取原文

摘要

Optical techniques are a promising technology to realize high frequency ultrasound arrays. High sensitivity and broad bandwidth have been demonstrated with thin film etalon sensors. We have previously demonstrated a 256-element etalon array with true parallel detection. A disadvantage of this approach is lower signal-to-noise ratio (SNR) due to the use of a linear CCD array. We are also exploring a serial approach where the optical probe beam is rapidly scanned to produce a 500-element etalon array. Higher SNR is achieved with photodiode detection and high optical probe power. The optoacoustic sensor is a thin film etalon consisting of a parylene layer with gold coatings on a glass substrate. A fiber coupled 785 nm diode laser is focused on the etalon, where the beam is rapidly scanned over a 5 mm line at a 50 Hz rate. The reflected beam is coupled into a multimode fiber and sent to an AC-coupled photodetector. The 25 MHz source transducer is driven with a 4 µs duration chirped waveform at a 50 kHz repetition rate. A 500 MHz 8-bit oscilloscope records the signals from all 500 elements before transfer to a workstation. Pulse compression, beamforming, and image display are performed with a graphics processing unit (GPU). The object is a wire target placed approximately 3 mm below the etalon surface. The chirped excitation provides an SNR increase of over 18 dB with respect to traditional impulse excitation. After pulse compression, the array data clearly shows the scattered wavefront from the wire target. The wire target is clearly visible, where the −6 dB width is 95 um. Our current system uses the GPU to perform off-line beamforming, where real-time execution is currently under development. An advantage of the serial approach over parallel detection is higher SNR, since the entire probe laser power is used to acquire the signal from an individual element. We are currently improving the system to provide B-mode images at video frame rates. We believe- these results suggest the potential of optoacoustic arrays for video-rate ultrasound biomicroscopy.
机译:光学技术是实现高频超声阵列的有前途的技术。薄膜标准具传感器已经证明了高灵敏度和宽带宽。我们之前已经演示了具有真正并行检测功能的256要素标准具阵列。这种方法的缺点是由于使用线性CCD阵列,信噪比(SNR)较低。我们还正在探索一种串行方法,在该方法中,对光学探测光束进行快速扫描,以产生500个元素的标准具阵列。光电二极管检测和高光学探头功率可实现更高的SNR。光声传感器是一种薄膜标准具,由在玻璃基板上具有金涂层的聚对二甲苯层构成。光纤耦合785 nm二极管激光器聚焦在标准具上,在该标准具上以5 Hz的频率以50 Hz的速率快速扫描光束。反射光束耦合到多模光纤中,然后发送到交流耦合光电探测器。 25 MHz源换能器以4 kHz持续时间的rp波形驱动,重复频率为50 kHz。一个500 MHz的8位示波器记录了所有500个元件的信号,然后将它们传输到工作站。脉冲压缩,波束形成和图像显示通过图形处理单元(GPU)执行。对象是放置在标准具表面以下约3 mm处的线靶。 traditional激励相对于传统脉冲激励提供了超过18 dB的SNR增加。脉冲压缩后,阵列数据清楚地显示了来自线靶的散射波前。导线目标清晰可见,-6 dB宽度为95 um。我们当前的系统使用GPU进行离线波束成形,目前正在开发实时执行功能。串行方法相对于并行检测的一个优势是更高的SNR,因为整个探测激光功率都用于从单个元件获取信号。我们目前正在改进该系统,以提供视频帧速率的B模式图像。我们相信-这些结果表明光声阵列在视频速率超声生物显微镜检查中的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号