首页> 外文期刊>Physical Review, A. Atomic, molecular, and optical physics >Superconducting qubits coupled to nanoelectromechanical resonators: An architecture for solid-state quantum-information processing
【24h】

Superconducting qubits coupled to nanoelectromechanical resonators: An architecture for solid-state quantum-information processing

机译:耦合到纳米机电谐振器的超导量子位:固态量子信息处理的体系结构

获取原文
获取原文并翻译 | 示例
           

摘要

We describe the design for a scalable, solid-state quantum-information-processing architecture based on the integration of GHz-frequency nanomechanical resonators with Josephson tunnel junctions, which has the potential for demonstrating a variety of single- and multiqubit operations critical to quantum computation. The computational qubits are eigenstates of large-area, current-biased Josephson junctions, manipulated and measured using strobed external circuitry. Two or more of these phase qubits are capacitively coupled to a high-quality-factor piezoelectric nanoelectromechanical disk resonator, which forms the backbone of our architecture, and which enables coherent coupling of the qubits. The integrated system is analogous to one or more few-level atoms (the Josephson junction qubits) in an electromagnetic cavity (the nanomechanical resonator). However, unlike existing approaches using atoms in electromagnetic cavities, here we can individually tune the level spacing of the "atoms" and control their "electromagnetic" interaction strength. We show theoretically that quantum states prepared in a Josephson junction can be passed to the nanomechanical resonator and stored there, and then can be passed back to the original junction or transferred to another with high fidelity. The resonator can also be used to produce maximally entangled Bell states between a pair of Josephson junctions. Many such junction-resonator complexes can be assembled in a hub-and-spoke layout, resulting in a large-scale quantum circuit. Our proposed architecture combines desirable features of both solid-state and cavity quantum electrodynamics approaches, and could make quantum-information processing possible in a scalable, solid-state environment.
机译:我们描述了基于GHz频率纳米机械谐振器与约瑟夫森隧道结的集成的可扩展的固态量子信息处理体系结构的设计,该潜力有可能证明对量子计算至关重要的各种单量子位和多量子位运算。计算量子位是大面积的,电流偏置的约瑟夫逊结的本征态,使用频闪外部电路进行操纵和测量。这些相位量子位中的两个或多个与高品质因数压电纳米机电盘谐振器电容耦合,这构成了我们架构的主干,并实现了量子位的相干耦合。集成系统类似于电磁腔(纳米机械谐振器)中的一个或多个少数原子(约瑟夫逊结量子位)。但是,与现有在电磁腔中使用原子的方法不同,这里我们可以单独调整“原子”的能级间距并控制其“电磁”相互作用强度。我们从理论上证明,在约瑟夫森结中制备的量子态可以传递给纳米机械谐振器并存储在那里,然后可以传递回原始结或以高保真度传递给另一个。谐振器还可用于在一对约瑟夫逊结之间产生最大纠缠的贝尔状态。许多这样的结-谐振器复合体可以以辐射状布局组装,从而形成大规模的量子电路。我们提出的体系结构结合了固态和腔体量子电动力学方法的理想特性,并且可以使量子信息处理在可扩展的固态环境中成为可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号