...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells
【24h】

Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells

机译:纤维状聚苯胺@氧化锰纳米复合材料作为超级电容器电极材料和阴极催化剂,可改善微生物燃料电池的发电

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Fibrous Pani-MnO2 nanocomposite were prepared using a one-step and scalable in situ chemical oxidative polymerization method. The formation, structural and morphological properties were investigated using a range of characterization techniques. The electrochemical capacitive behavior of the fibrous Pani-MnO2 nanocomposite was examined by cyclic voltammetry and galvanostatic charge-discharge measurements using a three-electrode experimental setup in an aqueous electrolyte. The fibrous Pani-MnO2 nanocomposite achieved high capacitance (525 F g(-1) at a current density of 2 A g(-1)) and excellent cycling stability of 76.9% after 1000 cycles at 10 A g(-1). Furthermore, the microbial fuel cell constructed with the fibrous Pani-MnO2 cathode catalyst showed an improved power density of 0.0588 W m(-2), which was higher than that of pure Pani and carbon paper, respectively. The improved electrochemical supercapacitive performance and cathode catalyst performance in microbial fuel cells were attributed mainly to the synergistic effect of Pani and MnO2 in fibrous Pani-MnO2, which provides high surface area for the electrode/electrolyte contact as well as electronic conductive channels and exhibits pseudocapacitance behavior.
机译:纤维状Pani-MnO2纳米复合材料是采用一步可扩展的原位化学氧化聚合方法制备的。使用一系列表征技术研究了形成,结构和形态特性。纤维状Pani-MnO2纳米复合材料的电化学电容行为通过循环伏安法和恒电流充放电测量,使用三电极实验装置在水性电解质中进行了检查。纤维状Pani-MnO2纳米复合材料在10 A g(-1)的1000次循环后实现了高电容(525 F g(-1)在2 A g(-1)的电流密度下)和76.9%的出色循环稳定性。此外,由纤维状Pani-MnO2阴极催化剂构成的微生物燃料电池的功率密度提高了0.0588 W m(-2),分别高于纯Pani和碳纸。微生物燃料电池中电化学超级电容性能和阴极催化剂性能的改善主要归因于Pani和MnO2在纤维状Pani-MnO2中的协同作用,这为电极/电解质接触以及电子导电通道提供了高表面积,并表现出假电容行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号