...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy
【24h】

Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy

机译:使用非化学计量策略了解层状富锂正极材料上原位生成和集成的尖晶石相的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Recently, spinel-layered integrated Li-rich cathode materials have attracted great interest due to the large enhancement of their electrochemical performances. However, the modification mechanism and the effect of the integrated spinel phase on Li-rich layered cathode materials are still not very clear. Herein, we have successfully synthesized the spinel-layered integrated Li-rich cathode material using a facile non-stoichiometric strategy (NS-LNCMO). The rate capability (84 mA h g(-1) vs. 28 mA h g(-1), 10 C), cycling stability (92.4% vs. 80.5%, 0.2 C), low temperature electrochemical capability (96.5 mA h g(-1) vs. 59 mA h g(-1), -20 degrees C), initial coulomb efficiency (92% vs. 79%) and voltage fading (2.77 V vs. 3.02 V, 200 cycles@ 1 C) of spinel-layered integrated Li-rich cathode materials have been significantly improved compared with a pure Li-rich phase cathode. Some new insights into the effect of the integrated spinel phase on a layered Li-rich cathode have been proposed through a comparison of the structure evolution of the integrated and Li-rich only materials before and after cycling. The Li-ion diffusion coefficient of NS-LNCMO has been enlarged by about 3 times and almost does not change even after 100 cycles indicating an enhanced structure stability. The integration of the spinel phase not only enhances the structure stability of the layered Li-rich phase during charging-discharging but also expands the interslab spacing of the Li-ion diffusion layer, and elongates TM-O covalent bond lengths, which lowers the activation barrier of Li+-transportation, and alleviates the structure strain during the cycling procedure.
机译:近来,由于尖晶石层的集成的富含锂的正极材料由于其电化学性能的大大提高而引起了极大的兴趣。然而,改性机理以及集成尖晶石相对富锂层状阴极材料的影响还不是很清楚。在这里,我们已经成功地使用一种简便的非化学计量策略(NS-LNCMO)合成了尖晶石层集成的富锂正极材料。速率能力(84 mA hg(-1)对28 mA hg(-1),10 C),循环稳定性(92.4%对80.5%,0.2 C),低温电化学性能(96.5 mA hg(-1) )vs. 59 mA hg(-1),-20°C),尖晶石层集成的初始库仑效率(92%vs. 79%)和电压衰减(2.77 V vs. 3.02 V,200个周期@ 1 C)与纯富锂相阴极相比,富锂阴极材料得到了显着改善。通过比较在循环之前和之后仅整合的和仅富含锂的材料的结构演变,已经提出了一些关于整合尖晶石相对层状富锂阴极的影响的新见解。 NS-LNCMO的锂离子扩散系数增加了约3倍,即使经过100次循环也几乎没有变化,这表明结构稳定性得到增强。尖晶石相的整合不仅增强了充锂过程中层状富锂相的结构稳定性,而且扩大了锂离子扩散层的板间间距,并延长了TM-O共价键的长度,从而降低了活化阻挡锂离子的运输,并减轻循环过程中的结构应变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号