首页> 外文期刊>Physical chemistry chemical physics: PCCP >Enhanced photophysical properties of plasmonic magnetic metal-alloyed semiconductor heterostructure nanocrystals: a case study for the Ag@Ni/Zn1-xMgxO system
【24h】

Enhanced photophysical properties of plasmonic magnetic metal-alloyed semiconductor heterostructure nanocrystals: a case study for the Ag@Ni/Zn1-xMgxO system

机译:等离子体金属金属合金的半导体异质结构纳米晶体的增强的光物理性质:Ag @ Ni / Zn1-xMgxO系统的案例研究

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding the effect of homovalent cation alloying in wide band gap ZnO and the formation of metal-semiconductor heterostructures is very important for maximisation of the photophysical properties of ZnO. Nearly monodisperse ZnO nanopyramid and Mg alloyed ZnO nanostructures have been successfully synthesized by one pot decomposition of metal stearate by using oleylamine both as activating and capping agent. The solid solubility of Mg(II) ions in ZnO is limited to similar to 30% without phase segregation. An interesting morphology change is found on increasing Mg alloying: from nanopyramids to self-assembled nanoflowers. The morphology change is explained by the oriented attachment process. The introduction of Mg into the ZnO matrix increases the band gap of the materials and also generates new zinc interstitial (Zn-i) and oxygen vacancy related defects. Plasmonic magnetic Ag@Ni core-shell (Ag as core and Ni as shell) nanocrystals are used as a seed material to synthesize Ag@ Ni/Zn1-xMgxO complex heterostructures. Epitaxial growth is established between Ag(111) and ZnO(110) planes in the heterostructure. An epitaxial metal-semiconductor interface is very crucial for complete electron-hole (e-h) separation and enhancement of the exciton lifetime. The alloyed semiconductor-metal heterostructure is observed to be highly photocatalytically active for dye degradation as well as photodetection. Incorporation of magnetic Ni(0) makes the photocatalyst superparamagnetic at room temperature which is found to be helpful for catalyst regeneration.
机译:理解均价阳离子合金化在宽带隙ZnO中的作用以及金属-半导体异质结构的形成对于最大化ZnO的光物理性能非常重要。通过使用油胺作为活化剂和封端剂对硬脂酸金属进行一锅分解,已经成功地合成了几乎单分散的ZnO纳米金字塔和Mg合金化的ZnO纳米结构。 Mg(II)离子在ZnO中的固溶度限制为类似于30%,而不会发生相分离。在增加镁合金化方面发现了一个有趣的形态变化:从纳米金字塔到自组装纳米花。形态变化可以通过定向附着过程来解释。将Mg引入ZnO基体会增加材料的带隙,还会产生新的锌间隙(Zn-i)和氧空位相关的缺陷。以等离子磁Ag @ Ni核-壳(Ag为核,Ni为壳)纳米晶为种子材料,合成Ag @ Ni / Zn1-xMgxO复合异质结构。在异质结构的Ag(111)和ZnO(110)平面之间建立了外延生长。外延金属-半导体界面对于完全电子-空穴(e-h)分离和提高激子寿命至关重要。观察到合金化的半导体-金属异质结构对染料降解以及光电检测具有高度的光催化活性。磁性Ni(0)的加入使光催化剂在室温下成为超顺磁性的,这被发现有助于催化剂的再生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号