...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Wavelet formulation of the polarizable continuum model. II. Use of piecewise bilinear boundary elements
【24h】

Wavelet formulation of the polarizable continuum model. II. Use of piecewise bilinear boundary elements

机译:可极化连续体模型的小波公式。二。分段双线性边界元素的使用

获取原文
获取原文并翻译 | 示例
           

摘要

The simplicity of dielectric continuum models has made them a standard tool in almost any Quantum Chemistry (QC) package. Despite being intuitive from a physical point of view, the actual electrostatic problem at the cavity boundary is challenging: the underlying boundary integral equations depend on singular, long-range operators. The parametrization of the cavity boundary should be molecular-shaped, smooth and differentiable. Even the most advanced implementations, based on the integral equation formulation (IEF) of the polarizable continuum model (PCM), generally lead to working equations which do not guarantee convergence to the exact solution and/or might become numerically unstable in the limit of large refinement of the molecular cavity (small tesserae). This is because they generally make use of a surface parametrization with cusps (interlocking spheres) and employ collocation methods for the discretization (point charges). Wavelets on a smooth cavity are an attractive alternative to consider: for the operators involved, they lead to highly sparse matrices and precise error control. Moreover, by making use of a bilinear basis for the representation of operators and functions on the cavity boundary, all equations can be differentiated to enable the computation of geometrical derivatives. In this contribution, we present our implementation of the IEFPCM with bilinear wavelets on a smooth cavity boundary. The implementation has been carried out in our module PCMSolver and interfaced with LSDalton, demonstrating the accuracy of the method both for the electrostatic solvation energy and for linear response properties. In addition, the implementation in a module makes our framework readily available to any QC software with minimal effort.
机译:介电连续体模型的简单性使其成为几乎任何量子化学(QC)封装中的标准工具。尽管从物理角度看是直观的,但空腔边界处的实际静电问题仍然具有挑战性:底层边界积分方程取决于奇异的远程算子。腔边界的参数化应为分子形,光滑且可微分。即使是基于可极化连续体模型(PCM)的积分方程公式(IEF)的最先进的实现,通常也会导致无法保证收敛到精确解的工作方程和/或在大范围内数值不稳定分子腔的细化(小镶嵌)。这是因为它们通常利用带有尖点(互锁球)的表面参数化,并采用用于离散化(点电荷)的搭配方法。平滑腔上的小波是一个值得考虑的替代方法:对于所涉及的运算符,它们会导致高度稀疏的矩阵和精确的误差控制。此外,通过使用双线性基础来表示腔边界上的算符和函数,可以微分所有方程式,从而能够计算几何导数。在此贡献中,我们介绍了在平滑腔体边界上使用双线性小波实现的IEFPCM。该实现已在我们的模块PCMSolver中进行,并与LSDalton进行了接口,证明了该方法在静电溶剂化能量和线性响应特性方面的准确性。此外,模块中的实现使我们的框架可轻松用于任何QC软件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号