首页> 美国卫生研究院文献>other >Accurate Solution of Multi-Region Continuum Biomolecule Electrostatic Problems Using the Linearized Poisson-Boltzmann Equation with Curved Boundary Elements
【2h】

Accurate Solution of Multi-Region Continuum Biomolecule Electrostatic Problems Using the Linearized Poisson-Boltzmann Equation with Curved Boundary Elements

机译:使用带有弯曲边界元的线性化Poisson-Boltzmann方程精确求解多区域连续生物分子静电问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a boundary-element method (BEM) implementation for accurately solving problems in biomolecular electrostatics using the linearized Poisson–Boltzmann equation. Motivating this implementation is the desire to create a solver capable of precisely describing the geometries and topologies prevalent in continuum models of biological molecules. This implementation is enabled by the synthesis of four technologies developed or implemented specifically for this work. First, molecular and accessible surfaces used to describe dielectric and ion-exclusion boundaries were discretized with curved boundary elements that faithfully reproduce molecular geometries. Second, we avoided explicitly forming the dense BEM matrices and instead solved the linear systems with a preconditioned iterative method (GMRES), using a matrix compression algorithm (FFTSVD) to accelerate matrix-vector multiplication. Third, robust numerical integration methods were employed to accurately evaluate singular and near-singular integrals over the curved boundary elements. Finally, we present a general boundary-integral approach capable of modeling an arbitrary number of embedded homogeneous dielectric regions with differing dielectric constants, possible salt treatment, and point charges. A comparison of the presented BEM implementation and standard finite-difference techniques demonstrates that for certain classes of electrostatic calculations, such as determining absolute electrostatic solvation and rigid-binding free energies, the improved convergence properties of the BEM approach can have a significant impact on computed energetics. We also demonstrate that the improved accuracy offered by the curved-element BEM is important when more sophisticated techniques, such as non-rigid-binding models, are used to compute the relative electrostatic effects of molecular modifications. In addition, we show that electrostatic calculations requiring multiple solves using the same molecular geometry, such as charge optimization or component analysis, can be computed to high accuracy using the presented BEM approach, in compute times comparable to traditional finite-difference methods.
机译:我们提出了一种边界元素方法(BEM)的实现,可以使用线性化的Poisson-Boltzmann方程来精确解决生物分子静电中的问题。激发这种实现的愿望是创建一种能够精确描述生物分子的连续模型中普遍存在的几何形状和拓扑的求解器。通过为这项工作专门开发或实施的四种技术的综合,可以实现此实现。首先,用于描述介电和离子排斥边界的分子和可及表面通过忠实地再现分子几何形状的弯曲边界元素离散化。其次,我们避免显式地形成密集的BEM矩阵,而是使用矩阵压缩算法(FFTSVD)来加速矩阵矢量乘法,并使用预处理的迭代方法(GMRES)求解线性系统。第三,采用鲁棒的数值积分方法来准确评估弯曲边界元上的奇异积分和近奇异积分。最后,我们提出了一种通用的边界积分方法,能够对任意数量的具有不同介电常数,可能的盐处理和点电荷的嵌入式均质介电区域进行建模。对所提出的BEM实现和标准有限差分技术的比较表明,对于某些类型的静电计算,例如确定绝对静电溶剂化和刚性结合自由能,BEM方法的改进的收敛性可以对计算产生重大影响。能量学。我们还证明,当使用更复杂的技术(例如非刚性绑定模型)来计算分子修饰的相对静电效应时,弯曲元件BEM所提供的更高的准确性非常重要。此外,我们证明,使用提出的BEM方法,可以使用相同的分子几何结构,需要多次求解的静电计算,例如电荷优化或组分分析,可以高精度地计算出来,其计算时间可与传统的有限差分法相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号