...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Predicting crystal structures and properties of matter under extreme conditions via quantum mechanics: the pressure is on
【24h】

Predicting crystal structures and properties of matter under extreme conditions via quantum mechanics: the pressure is on

机译:通过量子力学预测极端条件下物质的晶体结构和性质:压力在

获取原文
获取原文并翻译 | 示例
           

摘要

Experimental studies of compressed matter are now routinely conducted at pressures exceeding 1 mln atm (100 GPa) and occasionally at pressures greater than 10 mln atm (1 TPa). The structure and properties of solids that have been so significantly squeezed differ considerably from those of solids at ambient pressure (1 atm), often leading to new and unexpected physics. Chemical reactivity is also substantially altered in the extreme pressure regime. In this feature paper we describe how synergy between theory and experiment can pave the road towards new experimental discoveries. Because chemical rules-of-thumb established at 1 atm often fail to predict the structures of solids under high pressure, automated crystal structure prediction (CSP) methods are increasingly employed. After outlining the most important CSP techniques, we showcase a few examples from the recent literature that exemplify just how useful theory can be as an aid in the interpretation of experimental data, describe exciting theoretical predictions that are guiding experiment, and discuss when the computational methods that are currently routinely employed fail. Finally, we forecast important problems that will be targeted by theory as theoretical methods undergo rapid development, along with the simultaneous increase of computational power.
机译:现在,通常在超过100万大气压(100 GPa)的压力下进行压缩物质的实验研究,偶尔在大于1000万大气压(1 TPa)的压力下进行压缩物的实验研究。如此被严重挤压的固体的结构和性质与在环境压力(1个大气压)下的固体的结构和性质有很大不同,这常常导致新的和意外的物理学。在极端压力条件下,化学反应性也显着改变。在这篇专题论文中,我们描述了理论与实验之间的协同作用如何为新的实验发现铺平道路。由于建立在1 atm的化学经验定律通常无法预测高压下的固体结构,因此越来越多地采用自动晶体结构预测(CSP)方法。在概述了最重要的CSP技术之后,我们展示了一些近期文献中的例子,这些例子充分说明了理论如何有助于实验数据的解释,描述了指导实验的令人兴奋的理论预测,并讨论了何时使用计算方法目前常规使用的失败。最后,随着理论方法的快速发展以及计算能力的同时提高,我们预测了理论上将要针对的重要问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号