首页> 外文期刊>Physical chemistry chemical physics: PCCP >Pulsed electron-electron double resonance spectroscopy between a high-spin Mn2+ ion and a nitroxide spin label
【24h】

Pulsed electron-electron double resonance spectroscopy between a high-spin Mn2+ ion and a nitroxide spin label

机译:高自旋Mn2 +离子与一氧化氮自旋标记之间的脉冲电子双共振光谱

获取原文
获取原文并翻译 | 示例
       

摘要

Pulsed Electron-Electron Double Resonance (PELDOR) has attracted considerable attention for biomolecular applications, as it affords precise measurements of distances between pairs of spin labels in the range of 1.5-8 nm. Usually nitroxide moieties incorporated by site-directed spin labelling with cysteine residues are used as spin probes in protein systems. Recently, naturally occurring cofactors and metal ions have also been explored as paramagnetic spin species for such measurements. In this work we investigate the performance of PELDOR between a nitroxide spin label and a high-spin Mn2+ ion in a synthetic model compound at Q-band (34 GHz) and G-band (180 GHz). We demonstrate that the distances obtained with high-frequency PELDOR are in good agreement with structural predictions. At Q-band frequencies experiments have been performed by probing either the high-spin Mn2+ ion or the nitroxide spin label. At G-band frequencies we have been able to detect changes in the dipolar oscillation frequency, depending on the pump probe positions across the g-tensor resolved nitroxide EPR spectrum. These changes result from the restricted mobility of the nitroxide spin label in the model compound. Our results demonstrate that the high-spin Mn2+ ion can be used for precise distance measurements and open the doors for many biological applications, as naturally occurring Mg2+ sites can be readily exchanged for Mn2+.
机译:脉冲电子双共振(PELDOR)在生物分子应用中引起了广泛的关注,因为它可以精确测量1.5-8 nm范围内的自旋标记对之间的距离。通常,通过定点旋转标记与半胱氨酸残基结合的氮氧化物部分被用作蛋白质系统中的旋转探针。近来,天然存在的辅因子和金属离子也已经被研究作为顺磁性自旋物质用于这种测量。在这项工作中,我们研究了合成模型化合物在Q波段(34 GHz)和G波段(180 GHz)上氮氧化物自旋标记和高自旋Mn2 +离子之间的PELDOR性能。我们证明了高频PELDOR获得的距离与结构预测非常吻合。在Q频段,通过探测高自旋Mn2 +离子或一氧化氮自旋标记物进行了实验。在G波段的频率上,我们已经能够检测到偶极子振荡频率的变化,具体取决于跨g张量的分解一氧化氮EPR频谱的泵探针位置。这些变化是由于模型化合物中氮氧化物自旋标记物的运动受限所致。我们的结果表明,高自旋的Mn2 +离子可用于精确的距离测量,并为许多生物学应用打开了大门,因为天然存在的Mg2 +位置可以很容易地交换为Mn2 +。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号