首页> 外文期刊>Physical chemistry chemical physics: PCCP >Marked enhancement in electron-hole separation achieved in the low bias region using electrochemically prepared Mo-doped BiVO4 photoanodes
【24h】

Marked enhancement in electron-hole separation achieved in the low bias region using electrochemically prepared Mo-doped BiVO4 photoanodes

机译:使用电化学制备的Mo掺杂BiVO4光阳极在低偏置区域实现的电子-空穴分离显着增强

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Mo-doped BiVO4 electrodes were prepared by an electrochemical route for use as photoanodes in a photoelectrochemical celt. The purpose of Mo-doping was to improve the electron transport properties, which in turn can increase the electron-hole separation yield. The poor electron-hole separation yield was known to be one of the main limiting factors for BiVO4-based photoanodes. The electrochemical route provided an effective way of doping BiVO4, and the optimalty doped sample, BiV_(0.97)Mo_(0.03)O4, increased the electron-hole separation yield from 0.23 to 0.57 at 0.6 V vs. RHE, which is a record high separation yield achieved for BiVO4-based photoanodes. As a result, BiV_(0.97)Mo_(0.03)O4 generated impressive photocurrents, for example, 2 mA cm~(-2) at a potential as low as 0.4 V vs. RHE for sulfite oxidation, which has fast oxidation kinetics and, therefore, the loss of holes by surface recombination is negligible. For photooxidation of water, BiV_(0.97)Mo_(0.03)O4 was paired with FeOOH as an oxygen evolution catalyst (OEC) to improve the poor catalytic ability of BiV_(0.97)Mo_(0.03)O4 for water oxidation. The resulting BiV_(0.97)Mo_(0.03)O4/ FeOOH photoanodes generated a significantly improved photocurrent for water oxidation compared to previous reported results, but the photocurrent of BiV_(0.97)Mo_(0.03)O4/FeOOH for water oxidation could not reach the photocurrent of BiV_(0.97)Mo_(0.03)O4 for sulfite oxidation, in order to examine the cause, the effects of Mo-doping on the interaction between BiVO4 and FeOOH and the effects of FeOOH on the electron-hole separation yield of BiV_(0.97)Mo_(0.03)O4 were investigated in detail, which provided new insights into semiconductor-OEC interactions.
机译:通过电化学途径制备了Mo掺杂的BiVO 4电极,以用作光电化学电池中的光阳极。 Mo掺杂的目的是改善电子传输性能,这反过来又可以提高电子-空穴分离的产率。已知不良的电子-空穴分离产率是基于BiVO 4的光阳极的主要限制因素之一。电化学途径提供了一种掺杂BiVO4的有效方法,最佳掺杂样品BiV_(0.97)Mo_(0.03)O4在0.6V vs. RHE的情况下将电子-空穴分离的产率从0.23提高到0.57,创下了历史新高。基于BiVO4的光阳极可实现分离收率。结果,BiV_(0.97)Mo_(0.03)O4产生了令人印象深刻的光电流,例如2mA cm〜(-2),电位低至0.4 V vs.亚硫酸盐氧化的RHE,具有快速的氧化动力学,并且因此,由于表面重组而造成的空穴损失可以忽略不计。对于水的光氧化,将BiV_(0.97)Mo_(0.03)O4与FeOOH作为氧气释放催化剂(OEC)配对使用,以提高BiV_(0.97)Mo_(0.03)O4对水氧化的不良催化能力。与先前报道的结果相比,生成的BiV_(0.97)Mo_(0.03)O4 / FeOOH光阳极产生的水氧化光电流显着提高,但BiV_(0.97)Mo_(0.03)O4 / FeOOH的水氧化光电流不能达到为了研究亚硫酸盐氧化的BiV_(0.97)Mo_(0.03)O4的光电流,以研究原因,Mo掺杂对BiVO4与FeOOH相互作用的影响以及FeOOH对BiV _(-的电子-空穴分离产率)的影响0.97)Mo_(0.03)O4进行了详细研究,这为半导体-OEC相互作用提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号