首页> 美国卫生研究院文献>Chemical Science >Ultrathin Fe-NiO nanosheets as catalytic charge reservoirs for a planar Mo-doped BiVO4 photoanode
【2h】

Ultrathin Fe-NiO nanosheets as catalytic charge reservoirs for a planar Mo-doped BiVO4 photoanode

机译:超薄Fe-NiO纳米片作为平面Mo掺杂BiVO4光电阳极的催化电荷储存器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The energy conversion efficiency of a photoelectrochemical system is intimately connected to a number of processes, including light absorption, charge excitation, separation and transfer processes. Of these processes, the charge transfer rate at the electrode|electrolyte interface is the slowest and, hence, the rate-limiting step causing charge accumulation. Such an understanding underpins efforts focused on applying highly active electrocatalysts, which may contribute to the overall performance by augmenting surface charge accumulation, prolonging charge lifetime or facilitating charge transfer. How the overall effect depends on these individual possible mechanisms has been difficult to study previously. Aiming at advancing knowledge about this important interface, we applied first-order serial reactions to elucidate the charge excitation, separation and recombination kinetics on the semiconductor|electrocatalyst interfaces in air. The study platform for the present work was prepared using a two-step Mo-doped BiVO4 film modified with an ultrathin Fe-doped NiO nanosheet, which was derived from an Fe-doped α-Ni(OH)2 nanosheet by a convenient precipitation and ion-exchange method. The simulation results of the transient surface photovoltage (TSPV) data showed that the surface charge accumulation was significantly enhanced, even at an extremely low coverage (0.12–120 ppm) using ultra-thin Fe-NiO nanosheets. Interestingly, no improvement in the charge separation rate constants or reduction of recombination rate constants was observed under our experimental conditions. Instead, the ultra-thin Fe-NiO nanosheets served as a charge storage layer to facilitate the catalytic process for enhanced performance.
机译:光电化学系统的能量转换效率与许多过程密切相关,包括光吸收,电荷激发,分离和转移过程。在这些步骤中,在电解质界面处的电荷转移速率最慢,因此是导致电荷蓄积的限速步骤。这种理解为专注于应用高活性电催化剂的努力奠定了基础,这可以通过增加表面电荷的积累,延长电荷寿命或促进电荷转移来为整体性能做出贡献。总体效果如何取决于这些单独的可能机制以前很难研究。为了增进对这一重要界面的了解,我们应用了一阶串联反应来阐明空气中半导体界面上的电荷激发,分离和重组动力学。本研究的研究平台是使用两步掺杂Mo的BiVO4薄膜制备的,该薄膜经过超薄的Fe掺杂NiO纳米片修饰而成,该薄膜是从Fe掺杂的α-Ni(OH)2纳米片通过方便的沉淀和离子交换法。瞬态表面光电压(TSPV)数据的模拟结果表明,使用超薄Fe-NiO纳米片即使在极低的覆盖率(0.12–120 ppm)下,表面电荷累积也显着增强。有趣的是,在我们的实验条件下,未观察到电荷分离速率常数的提高或重组速率常数的降低。取而代之的是,超薄的Fe-NiO纳米片充当电荷存储层,以促进催化过程以提高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号