...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Towards a carbon independent and CO2-free electrochemical membrane process for NH3 synthesis
【24h】

Towards a carbon independent and CO2-free electrochemical membrane process for NH3 synthesis

机译:迈向无碳且无二氧化碳的NH3合成电化学膜工艺

获取原文
获取原文并翻译 | 示例

摘要

Ammonia is exclusively synthesized by the Haber-Bosch process starting from precious carbon resources such as coal or CH4. With H2O, H2 is produced and with N2, NH3 can be synthesized at high pressures and temperatures. Regrettably, the carbon is not incorporated into NH3 but emitted as CO2. Valuable carbon sources are consumed which could be used otherwise when carbon sources become scarce. We suggest an alternative process concept using an electrochemical membrane reactor (ecMR). A complete synthesis process with N2 production and downstream product separation is presented and evaluated in a multi-scale model to quantify its energy consumption. A new micro-scale ecMR model integrates mass, species, heat and energy balances with electrochemical conversions allowing further integration into a macro-scale process flow sheet. For the anodic oxidation reaction H2O was chosen as a ubiquitous H2 source. Nitrogen was obtained by air separation which combines with protons from H2O to give NH3 using a hypothetical catalyst recently suggested from DFT calculations. The energy demand of the whole electrochemical process is up to 20% lower than the Haber-Bosch process using coal as a H2 source. In the case of natural gas, the ecMR process is not competitive under today's energy and resource conditions. In future however, the electrochemical NH3 synthesis might be the technology-of-choice when coal is easily accessible over natural gas or limited carbon sources have to be used otherwise but for the synthesis of the carbon free product NH3.
机译:氨是通过哈伯-博世(Haber-Bosch)工艺专门从宝贵的碳资源(例如煤或CH4)开始合成的。用H2O可以生产H2,用N2可以在高压和高温下合成NH3。遗憾的是,碳并未结合到NH3中,而是以CO2的形式排放。消耗了宝贵的碳源,当碳源变得稀缺时,可将其用于其他用途。我们建议使用电化学膜反应器(ecMR)的替代工艺概念。提出了具有N2生产和下游产物分离的完整合成过程,并在多尺度模型中对其进行了评估,以量化其能耗。一个新的微型ecMR模型将质量,物质,热量和能量的平衡与电化学转化结合在一起,从而可以进一步集成到宏观过程流程图中。对于阳极氧化反应,选择H2O作为普遍存在的H2源。氮气是通过空气分离法获得的,该空气与来自H2O的质子结合,使用DFT计算中最近提出的一种假想催化剂生成NH3。整个电化学过程的能源需求比使用煤作为H2源的Haber-Bosch工艺要低20%。就天然气而言,在当今的能源和资源条件下,ecMR工艺没有竞争力。但是,在将来,当煤可通过天然气轻松获得,或者必须使用有限的碳源来合成无碳产物NH3时,电化学合成NH3可能是首选技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号