首页> 外文期刊>Physical chemistry chemical physics: PCCP >The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte—cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation
【24h】

The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte—cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation

机译:SEI层的稳定性,表面成分和电解质-阴极界面上过渡金属在电化学循环作用下的氧化态:X射线光电子能谱研究

获取原文
获取原文并翻译 | 示例
       

摘要

The stability of the valence state of the 3d transition metal ions and the stoichiometry of LiMO2 (M = Co, Ni, Mn) layered oxides at the surface-electrolyte interface plays a crucial role in energy storage applications. The surface oxidation/reduction of the cations caused by the contact of the solids to air or to the electrolyte results in the blocking of the Li-transport through the interface that leads to the fast batteries deterioration. The influence of the end-of-charge voltage on the chemical composition and the oxidation state of 3d transition metal ions, as well as the stability of the solid-electrolyte interface formed during the electrochemical Li-deintercalation/intercalation of the LiCoO2 and Li(Ni,Mn,Co)02, have been investigated by X-ray photoelectron spectroscopy. While the chemical composition of the solid-electrolyte interface is similar for both layered oxide surfaces, the electrochemical cycling to some critical voltage values leads to the disappearance of the interface. By the analysis of the shape of the 2p and 3s photoelectron emissions we show that the formation of the solid-electrolyte interface layer correlates with the partial reduction of the trivalent Co ions at the electrolyte-LiCoO2 interface and the amount of the Co~(2+) ions is increased as the solid-electrolyte interface vanishes. In contrast, the Mn~(4+), Co~(3+) and Ni~(2+) ions of the Li(Ni,Mn,Co)O2 are stable at the interface under the electrochemical cycling to higher end-of-charge voltage. A correlation between deterioration of the LiCoO2 and Li(Ni,Mn,Co)O2 batteries and the change of electronic structure at the surface/interface after the electrochemical cycling has been found. The dissolution of the solid-electrolyte interface layer might be the reason for the fast deterioration of the Li-ion batteries.
机译:3d过渡金属离子的价态的稳定性以及表面电解质界面处LiMO2(M = Co,Ni,Mn)层状氧化物的化学计量比在储能应用中起着至关重要的作用。由固体与空气或电解质的接触引起的阳离子的表面氧化/还原导致锂通过界面的传输受阻,导致电池快速老化。充电终止电压对3d过渡金属离子的化学组成和氧化态的影响以及在LiCoO2和Li(Li)的电化学Li脱嵌/嵌入过程中形成的固体电解质界面的稳定性Ni,Mn,Co)O 2,已经通过X射线光电子能谱研究。尽管固体电解质界面的化学组成对于两个层状氧化物表面都是相似的,但电化学循环至某些临界电压值会导致界面消失。通过对2p和3s光电子发射的形状的分析,我们表明,固体电解质界面层的形成与电解质-LiCoO2界面上三价Co离子的部分还原以及Co〜(2 +)离子随着固体电解质界面的消失而增加。相比之下,Li(Ni,Mn,Co)O2的Mn〜(4 +),Co〜(3+)和Ni〜(2+)离子在电化学循环至更高末端的界面稳定充电电压。发现了LiCoO2和Li(Ni,Mn,Co)O2电池的劣化与电化学循环后表面/界面电子结构的变化之间的相关性。固体电解质界面层的溶解可能是锂离子电池快速老化的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号