...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Synthesis and dissipative particle dynamics simulation of cross-linkable fluorinated diblock copolymers: self-assembly aggregation behavior in different solvents
【24h】

Synthesis and dissipative particle dynamics simulation of cross-linkable fluorinated diblock copolymers: self-assembly aggregation behavior in different solvents

机译:可交联氟化二嵌段共聚物的合成和耗散粒子动力学模拟:在不同溶剂中的自组装聚集行为

获取原文
获取原文并翻译 | 示例
           

摘要

Developing microstructures, such as low molecular aggregates, spherical micelles and multi-compartment micelles, is an expanding area of research in Materials Science. By applying an atom transfer radical polymerization (ATRP) process to cross-linkable fluorinated diblock copolymers and analyzing the data we are able to demonstrate the potential for developing films with different micro-structures for additional biological research. Applying the Dissipative Particle Dynamic (DPD) Method, Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) techniques to cross-linkable fluorinated diblock copolymers of (methyl methacrylate-co-hydroxyethyl methacrylate-co-butyl methaerylate)-b-2-(perfluoroalkyl)ethyl methacrylate (MMA-co-HEMA-co-BMA-b-FMA) we were able to analyze the structures and their relationships to the aggregation of various microstructure formations through the use of various solvents in the process. For the self-assembly of the cross-linkable diblock copolymer in solutions, the DPD simulation results are only in qualitative agreement with experimental data of aggregate morphologies and sizes. This suggests an improved approach to creating materials and methods necessary for studying microstructures in films used in other research areas. Our work examines whether using selective solvents can be easily extended to prepare aggregates with different morphologies, which is an effective shortcut to obtain films with different microstructures. DPD simulation can be considered as an adjunct to experiments and provides other valuable information for the experiment.
机译:发展微观结构,例如低分子聚集体,球形胶束和多室胶束,是材料科学领域的一个扩展研究领域。通过将原子转移自由基聚合(ATRP)方法应用于可交联的氟化二嵌段共聚物并分析数据,我们能够证明开发具有不同微结构薄膜的潜力,以进行进一步的生物学研究。将耗散粒子动力学(DPD)方法,透射电子显微镜(TEM)和扫描电子显微镜(SEM)技术应用于(甲基丙烯酸甲酯-甲基丙烯酸共聚物-甲基丙烯酸羟乙酯-甲基丙烯酸钴-丁酯)-b-2的可交联氟化二嵌段共聚物-(全氟烷基)甲基丙烯酸乙酯(MMA-co-HEMA-co-BMA-b-FMA),我们能够通过在过程中使用各种溶剂来分析结构及其与各种微观结构形成的聚集的关系。对于溶液中可交联二嵌段共聚物的自组装,DPD模拟结果与聚集体形态和尺寸的实验数据仅在质量上吻合。这表明一种改进的方法可以创建研究其他研究领域中使用的薄膜微结构所需的材料和方法。我们的工作研究了使用选择性溶剂是否可以轻松扩展以制备具有不同形态的聚集体,这是获得具有不同微观结构的薄膜的有效捷径。 DPD模拟可以被视为实验的补充,并为实验提供其他有价值的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号