首页> 外文期刊>Spectrochimica acta, Part A. Molecular and biomolecular spectroscopy >Computational study of influence of diffuse basis functions on geometry optimization and spectroscopic properties of losartan potassium
【24h】

Computational study of influence of diffuse basis functions on geometry optimization and spectroscopic properties of losartan potassium

机译:扩散基函数对氯沙坦钾离子几何优化和光谱性质影响的计算研究

获取原文
获取原文并翻译 | 示例
           

摘要

The work was aimed at investigating the influence of diffusion of basis functions on the geometry optimization of molecule of losartan in acidic and salt form. Spectroscopic properties of losartan potassium were also calculated and compared with experiment. Density functional theory method with various basis sets: 6-31G(d,p) and its diffused variations 6-31G(d,p)+ and 6-31G(d,p)++ was used. Application of diffuse basis functions in geometry optimization resulted in significant change of total molecule energy. Total molecule energy of losartan potassium decreased by 112.91 KJ/mol and 114.32 kJ/mol for 6-31G(d,p)+ and 6-31G(d,p)++ basis sets, respectively. Almost the same decrease was observed for losartan: 114.99 KJ/mol and 117.08 kJ/mol respectively for 6-31G(d,p)+ and 6-31G(d,p)++ basis sets. Further investigation showed significant difference within geometries of losartan potassium optimized with investigated basis sets. Application of diffused basis functions resulted in average 1.29 angstrom difference in relative position between corresponding atoms of three obtained geometries. Similar study taken on losartan resulted in only average 0.22 angstrom of dislocation. Extensive analysis of geometry changes in molecules obtained with diffused and non-diffuse basis functions was carried out in order to elucidate observed changes. The analysis was supported by electrostatic potential maps and calculation of natural atomic charges. UV, Fr-IR and Raman spectra of losartan potassium were calculated and compared with experimental results. No crucial differences between Raman spectra obtained with different basis sets were observed. However, Fr-IR spectra of geometry of losartan potassium optimized with 6-31G(d,p)++ basis set resulted in 40% better correlation with experimental FT-IR spectra than FT-IR calculated with geometry optimized with 6-31G(d,p) basis set. Therefore, it is highly advisable to optimize geometry of molecules with ionic interactions using diffuse basis functions when accuracy of results is a priority. (C) 2014 Elsevier B.V. All rights reserved.
机译:这项工作旨在研究基本功能的扩散对酸性和盐形式氯沙坦分子几何优化的影响。还计算了氯沙坦钾的光谱性质,并与实验进行了比较。使用具有各种基本集的密度泛函理论方法:6-31G(d,p)及其扩散变化6-31G(d,p)+和6-31G(d,p)++。扩散基函数在几何优化中的应用导致总分子能量的显着变化。对于6-31G(d,p)+和6-31G(d,p)++基组,氯沙坦钾的总分子能量分别降低了112.91 KJ / mol和114.32 kJ / mol。氯沙坦观察到几乎相同的下降:6-31G(d,p)+和6-31G(d,p)++基组分别为114.99 KJ / mol和117.08 kJ / mol。进一步的研究表明,用研究的基础集优化的氯沙坦钾的几何结构存在显着差异。扩散基函数的应用导致三种获得的几何结构的相应原子之间的相对位置平均相差1.29埃。对氯沙坦进行的类似研究仅导致平均位错0.22埃。为了阐明观察到的变化,对通过扩散和非扩散基函数获得的分子的几何形状变化进行了广泛的分析。静电势图和自然原子电荷的计算为分析提供了支持。计算了氯沙坦钾的UV,Fr-IR和拉曼光谱,并与实验结果进行了比较。没有观察到用不同基集获得的拉曼光谱之间的关键差异。但是,用6-31G(d,p)++基组优化的氯沙坦钾几何形状的Fr-IR光谱与实验FT-IR光谱的相关性比用6-31G(几何形状)优化的FT-IR更好。 d,p)基础集。因此,当结果的准确性是优先考虑时,强烈建议使用弥散基函数来优化具有离子相互作用的分子的几何形状。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号