...
首页> 外文期刊>RSC Advances >Surface carbon species formation from ethylene decomposition on Pd(100): a first-principles-based kinetic Monte Carlo study
【24h】

Surface carbon species formation from ethylene decomposition on Pd(100): a first-principles-based kinetic Monte Carlo study

机译:乙烯在Pd(100)上分解产生的表面碳物质:基于第一原理的动力学蒙特卡洛研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Based on the activation barriers and reaction energies from periodic density functional calculations, we conducted kinetic Monte Carlo (kMC) simulations of surface carbon species formation from ethylene decomposition on a Pd(100) surface. A comprehensive reaction network of ethylene decomposition involving such intermediates as CH2CH, CHCH, CH2C, CHC, CC, CH2 and CH was proposed. Our kMC simulations show that the most probable pathway of ethylene decomposition on Pd(100) is CH2CH2 -> CH2CH -> CH2C -> CHC -> CC, among which the dehydrogenation of CH2CH2 to CH2CH is the rate-limiting step with the activation barrier of 1.51 eV, followed by CH2CH2 -> CH2CH -> CHCH -> CHC -> CC, whose rate-limiting step is the dehydrogenation of CH2CH to CHCH with the activation barrier of 1.59 eV. The two most probable pathways produce a carbon dimer as the final product, since the activation barrier of the C-C bond cleavage reaction is so high (2.32 eV) that it is almost impossible for it to occur before the metal surface is totally poisoned by surface carbon species. Another three feasible pathways are: (i) CH2CH2 -> CH2CH -> CHCH -> CH -> C, (ii) CH2CH2 -> CH2CH -> CHCH -> CHC -> CH + C -> C and (iii) CH2CH2 -> CH2CH -> CH2C -> CHC -> CH + C -> C, whose final products contain surface carbon monomers. And the reactions involving C-C bond cleavage are the rate-limiting step of the three pathways. Simple as the reaction network of ethylene decomposition looks, it is still difficult to analyze the decomposition mechanism merely according to the activation barriers from DFT calculations. Our work here demonstrates that kMC simulations can nicely tackle the problem on competitive reaction pathways, each of which involves some reactions with relatively low activation barriers (e.g. the dehydrogenation reactions involved in ethylene decomposition) and some other reactions with relatively high activation barriers (e.g. the C-C bond cleavage reactions involved in ethylene decomposition).
机译:基于周期性密度泛函计算的活化能垒和反应能,我们对Pd(100)表面乙烯分解形成的表面碳物质进行了动力学蒙特卡洛(kMC)模拟。提出了一种乙烯分解反应的综合反应网络,该网络涉及CH2CH,CHCH,CH2C,CHC,CC,CH2和CH等中间体。我们的kMC模拟表明,乙烯在Pd(100)上分解的最可能途径是CH2CH2-> CH2CH-> CH2C-> CHC-> CC,其中CH2CH2脱氢为CH2CH是具有活化障碍的限速步骤然后,CH 2 CH 2-> CH 2 CH-> CHCH-> CHC-> CC的速率限制为1.51 eV,其限速步骤是将CH 2 CH脱氢为CH1.5,其激活势垒为1.59 eV。两种最可能的途径均会产生最终产物碳二聚体,因为CC键裂解反应的活化势垒非常高(2.32 eV),几乎不可能在金属表面被表面碳完全毒化之前发生种类。另三种可行的途径是:(i)CH2CH2-> CH2CH-> CHCH-> CH-> C,(ii)CH2CH2-> CH2CH-> CHCH-> CHC-> CH + C-> C和(iii)CH2CH2- > CH2CH-> CH2C-> CHC-> CH + C-> C,其最终产物包含表面碳单体。涉及C-C键断裂的反应是这三个途径的限速步骤。尽管乙烯分解的反应网络看起来很简单,但仅根据DFT计算得出的活化障碍仍难以分析分解机理。我们在这里的工作表明,kMC模拟可以很好地解决竞争性反应途径中的问题,每个反应途径都涉及一些活化垒相对较低的反应(例如,乙烯分解所涉及的脱氢反应),以及其他一些活化垒相对较高的反应(例如,参与乙烯分解的CC键裂解反应)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号