...
首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Energy Budget of Liquid Drop Impact at Maximum Spreading: Numerical Simulations and Experiments
【24h】

Energy Budget of Liquid Drop Impact at Maximum Spreading: Numerical Simulations and Experiments

机译:最大散布时液滴冲击的能量收支:数值模拟和实验

获取原文
获取原文并翻译 | 示例

摘要

The maximum spreading of an impinging droplet on a rigid surface is studied for low to high impact velocity, until the droplet starts splashing. We investigate experimentally and numerically the role of liquid properties, such as surface-tension and viscosity, on drop impact using three liquids. It is found that the use of the experimental dynamic contact angle at maximum spreading in the Kistler model, which is used as a boundary condition for the CFD-VOF calculation, gives good agreement between experimental and numerical results. Analytical models commonly used to predict the boundary layer thickness and time at maximum spreading are found to be less correct,, meaning that energy balance models relying on these relations have to Be considered with care. The-time of maximum spreading is found to depend on both the impact velocity and surface tension, and neither dependency is predicted correctly in common analytical models. The relative proportion of the viscous dissipation in-the total energy budget increases with impact velocity with respect to surface energy.At high impact velocity, the contribution of surface energy, even before splashing, is still substantial, meaning that both surface energy and viscous, dissipation have to be taken into account, and scaling laws depending only on viscous dissipation do not apply. At low impact Velocity, viscous dissipation seems to play an important role in low-surface-tension liquids such as ethanol.
机译:从低到高的冲击速度研究了撞击液滴在刚性表面上的最大散布,直到液滴开始飞溅为止。我们通过实验和数值研究了液体特性(例如表面张力和粘度)对使用三种液体的液滴撞击的作用。发现在奇石模型中使用最大扩展处的实验动态接触角作为CFD-VOF计算的边界条件,在实验和数值结果之间取得了很好的一致性。发现通常用于预测最大扩展时边界层厚度和时间的分析模型不太正确,这意味着必须谨慎考虑依赖于这些关系的能量平衡模型。发现最大扩展的时间取决于撞击速度和表面张力,并且在常见的分析模型中均无法正确预测依赖关系。相对于表面能,粘性耗散在总能量收支中的相对比例随冲击速度的增加而增加。在高冲击速度下,即使在飞溅之前,表面能的贡献仍然很大,这意味着表面能和粘性必须考虑耗散,并且仅取决于粘性耗散的缩放定律不适用。在低冲击速度下,粘性耗散似乎在低表面张力液体(例如乙醇)中起着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号