...
首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Superior Catalytic Performance of Gold Nanoparticles Within Small Cross-Linked Lysozyme Crystals
【24h】

Superior Catalytic Performance of Gold Nanoparticles Within Small Cross-Linked Lysozyme Crystals

机译:小交联的溶菌酶晶体中金纳米颗粒的优异催化性能

获取原文
获取原文并翻译 | 示例

摘要

Bionanomaterials synthesized by bioinspired templating methods have emerged as a novel class of composite materials with varied applications in catalysis, detection, drug delivery, and biomedicine. In this study, two kinds of cross-linked lysozyme crystals (CLLCs) with different sizes were applied for the in situ growth of Au nanoparticles (AuNPs). The resulting composite materials were characterized by light microscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The catalytic properties of the prepared materials were examined in the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). It was found that the size of the AuNPs increased with an increase in Au loading for both small and large crystals. In addition, small crystals favored homogeneous adsorption and distribution of the metal precursors. And the size of the AuNPs within small crystals could be maintained below 2.5 nm by managing the HAuCl4/lysozyme molar ratio. Furthermore, the lysozyme functional groups blocked the AuNP activity sites, therefore reducing their catalytic activity. This effect was more pronounced for small AuNPs. Moreover, the mass transfer of reactants (4-NP) from solution to AuNPs within the crystals restricted their catalytic reduction, leading to superior catalytic performance of the AuNPs within small cross-linked lysozyme crystals (Au@S-CLLCs) compared to those within large cross-linked lysozyme crystals (Au@L-CLLCs) at similar Au loadings. Finally, an increase in Au loading clogged the crystal channels with increased quantities of larger AuNPs, thus impeding the catalytic performance of Au@S-CLLCs.
机译:通过生物启发的模板方法合成的生物纳米材料已成为一类新型的复合材料,在催化,检测,药物递送和生物医学中具有多种应用。在这项研究中,两种大小不同的交联溶菌酶晶体(CLLC)用于原位生长Au纳米颗粒(AuNPs)。通过光学显微镜,扫描电子显微镜,透射电子显微镜,热重分析和X射线光电子能谱表征所得的复合材料。在将4-硝基苯酚(4-NP)催化还原成4-氨基苯酚(4-AP)中检查了所制备材料的催化性能。已经发现,对于小晶体和大晶体,AuNP的尺寸随着Au负载的增加而增加。另外,小晶体有利于金属前体的均匀吸附和分布。通过控制HAuCl4 /溶菌酶的摩尔比,可以使小晶体中AuNPs的大小保持在2.5 nm以下。此外,溶菌酶官能团阻断了AuNP活性位点,从而降低了其催化活性。对于小的AuNPs,这种影响更为明显。此外,反应物(4-NP)从溶液到晶体中的AuNPs的传质限制了它们的催化还原作用,从而导致与交联溶菌酶小晶体(Au @ S-CLLCs)相比,AuNPs在较小的交联溶菌酶晶体中具有优异的催化性能。大的交联溶菌酶晶体(Au @ L-CLLCs),具有相似的金含量。最后,金载量的增加使晶体通道的大量AuNPs数量增加,从而阻碍了Au @ S-CLLCs的催化性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号