...
首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >pH-Induced Vesicle-to-Micelle Transition in Amphiphilic Diblock Copolymer: Investigation by Energy Transfer between in Situ Formed Polymer Embedded Gold Nanoparticles and Fluorescent Dye
【24h】

pH-Induced Vesicle-to-Micelle Transition in Amphiphilic Diblock Copolymer: Investigation by Energy Transfer between in Situ Formed Polymer Embedded Gold Nanoparticles and Fluorescent Dye

机译:两亲性双嵌段共聚物中的pH诱导的囊泡向胶束转变:通过原位形成的聚合物包埋的金纳米粒子与荧光染料之间的能量转移进行研究

获取原文
获取原文并翻译 | 示例

摘要

The ability to regulate the formation of nanostructures through self-assembly of amphiphilic block copolymers is of immense significance in the field of biology and medicine. In this work, a new block copolymer synthesized by using reversible additionfragmentation chain transfer (RAFT) polymerization technique from poly(ethylene glycol) monomethyl ether acrylate (PEGMA) and Boc-l-tryptophan acryloyloxyethyl ester (Boc-l-trp-HEA) was found to spontaneously form pH-responsive water-soluble nanostructures after removal of the Boc group. While polymer vesicles or polymerosomes were formed at physiological pH, the micelles were formed at acidic pH (< 5.2), and this facilitated a pH-induced reversible vesicle-to-micelle transition. Formation of these nanostructures was confirmed by different characterization techniques, viz. transmission electron microscopy, dynamic light scattering, and steady-state fluorescence measurements. Further, these vesicles were successfully utilized to reduce HAuCl4 and stabilize the resulting gold nanoparticles (AuNPs). These AuNPs, confined within the hydrophobic shell of the vesicles, could participate in energy transfer process with fluorescent dye molecules encapsulated in the core of the vesicles, thus forming a nanometal surface energy transfer (NSET) pair. Subsequently, following the efficiency of energy transfer between this pair, it was possible to monitor the process of transition from vesicles to micelles. Thus, in this work, we have successfully demonstrated that NSET can be used to follow the transition between nanostructures formed by amphiphilic block copolymers.
机译:通过两亲性嵌段共聚物的自组装调节纳米结构形成的能力在生物学和医学领域中具有巨大的意义。在这项工作中,通过使用可逆加成断裂链转移(RAFT)聚合技术由聚乙二醇单甲醚丙烯酸酯(PEGMA)和Boc-1-色氨酸丙烯酰氧基乙基酯(Boc-1-trp-HEA)合成了一种新的嵌段共聚物。发现去除Boc基团后可自发形成pH响应型水溶性纳米结构。当在生理pH下形成聚合物囊泡或聚合物小体时,在酸性pH(<5.2)下形成胶束,这促进了pH诱导的可逆囊泡向胶束到胶束的转变。这些纳米结构的形成已通过不同的表征技术得以证实。透射电子显微镜,动态光散射和稳态荧光测量。此外,这些囊泡已成功用于还原HAuCl4并稳定所得的金纳米颗粒(AuNPs)。这些被限制在囊泡的疏水壳内的AuNPs可以通过包裹在囊泡核心中的荧光染料分子参与能量转移过程,从而形成纳米金属表面能量转移(NSET)对。随后,跟随这对之间的能量转移效率,可以监测从囊泡到胶束的转变过程。因此,在这项工作中,我们成功地证明了NSET可用于追踪两亲性嵌段共聚物形成的纳米结构之间的过渡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号