首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Response to Extreme Temperatures of Mesoporous Silica MCM-41: Porous Structure Transformation Simulation and Modification of Gas Adsorption Properties
【24h】

Response to Extreme Temperatures of Mesoporous Silica MCM-41: Porous Structure Transformation Simulation and Modification of Gas Adsorption Properties

机译:介孔二氧化硅MCM-41对极端温度的响应:多孔结构转变模拟和气体吸附性能的改性

获取原文
获取原文并翻译 | 示例
       

摘要

Molecular dynamics (MD) and Monte Carlo (MC) simulations were applied together for the first time to reveal the porous structure transformation mechanisms of mesoporous silica MCM-41 subjected to temperatures up to 2885 K. Silica was experimentally characterized to inform the models and enable prediction of changes in gas adsorption/separation properties. MD simulations suggest that the pore closure process is activated by a collective diffusion of matrix atoms into the porous region, accompanied by bond reformation at the surface. Degradation is kinetically limited, such that complete pore closure is postponed at high heating rates. We experimentally observe decreased gas adsorption with increasing temperature in mesoporous silica heated at fixed rates, due to pore closure and structural degradation consistent with simulation predictions. Applying the Kissinger equation, we find a strong correlation between the simulated pore collapse temperatures and the experimental values which implies an activation energy of 416 +/- 17 kJ/mol for pore closure. MC simulations give the adsorption and selectivity for thermally treated MCM-41, for N-2, Ar, Kr, and Xe at room temperature within the 1-10 000 kPa pressure range. Relative to pristine MCM-41, we observe that increased surface roughness due to decreasing pore size amplifies the difference of the absolute adsorption amount differently for different adsorbate molecules. In particular, we find that adsorption of strongly interacting molecules can be enhanced in the low-pressure region while adsorption of weakly interacting molecules is inhibited. This then results in higher selectivity in binary mixture adsorption in mesoporous silica.
机译:首次将分子动力学(MD)和蒙特卡洛(MC)模拟一起应用,以揭示介孔二氧化硅MCM-41在高达2885 K的温度下的多孔结构转变机理。对二氧化硅进行了实验表征,以为模型提供信息并实现气体吸附/分离特性变化的预测。 MD模拟表明,闭孔过程是通过基体原子集体扩散到多孔区域中并伴随表面的键重整而激活的。降解在动力学上受到限制,使得在高加热速率下完全的孔闭合被延迟。我们实验观察到以固定速率加热的中孔二氧化硅在温度升高时气体吸附降低,这是由于孔闭和结构退化与模拟预测一致。应用基辛格方程,我们发现模拟的孔隙塌陷温度与实验值之间具有很强的相关性,这暗示了孔隙封闭的活化能为416 +/- 17 kJ / mol。 MC模拟给出了热处理的MCM-41,N-2,Ar,Kr和Xe在室温下(压力范围为1-10 000 kPa时)的吸附和选择性。相对于原始MCM-41,我们观察到由于孔径减小而导致的表面粗糙度增加,从而对不同的被吸附物分子而言,绝对吸附量的差异会有所不同。特别地,我们发现在低压区域可以增强强相互作用分子的吸附,而抑制弱相互作用分子的吸附。然后,这导致在中孔二氧化硅中二元混合物吸附的选择性更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号