...
首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Condensation on Surface Energy Gradient Shifts Drop Size Distribution toward Small Drops
【24h】

Condensation on Surface Energy Gradient Shifts Drop Size Distribution toward Small Drops

机译:表面能梯度的凝结使液滴尺寸分布向小液滴移动

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

During dropwise condensation from vapor onto a cooled surface, distributions of drops evolve by nucleation, growth, and coalescence. Drop surface coverage dictates the heat transfer characteristics and depends on both drop size and number of drops present on the surface at any given time. Thus, manipulating drop distributions is crucial to maximizing heat transfer. On earth, manipulation is achieved with gravity. However, in applications with small length scales or in low gravity environments, other methods of removal, such as a surface energy gradient, are required. This study examines how chemical modification of a cooled surface affects drop growth and coalescence, which in turn influences how a population of drops evolves. Steam is condensed onto a horizontally oriented surface that has been treated by silanization to deliver either a spatially uniform contact angle (hydrophilic, hydrophobic) or a continuous radial gradient of contact angles (hydrophobic to hydrophilic). The time evolution of number density and associated drop size distributions are measured. For a uniform surface, the shape of the drop size distribution is unique and can be used to identify the progress of condensation. In contrast, the drop size distribution for a gradient surface, relative to a uniform surface, shifts toward a population of small drops. The frequent sweeping of drops truncates maturation of the first generation of large drops and locks the distribution shape at the initial distribution. The absence of a shape change indicates that dropwise condensation has reached a steady state. Previous reports of heat transfer enhancement on chemical gradient surfaces can be explained by this shift toward smaller drops, from which the high heat transfer coefficients in dropwise condensation are attributed to. Terrestrial applications using gravity as the primary removal mechanism also stand to benefit from inclusion of gradient surfaces because the critical threshold size required for drop movement is reduced.
机译:在从蒸汽到冷却表面的逐滴冷凝过程中,液滴的分布通过成核,生长和聚结而形成。液滴表面的覆盖率决定了传热特性,并取决于液滴大小和在任何给定时间表面上液滴的数量。因此,控制液滴分布对于最大化传热至关重要。在地球上,重力是可操纵的。然而,在小规模的应用或在低重力环境中,需要其他去除方法,例如表面能梯度。这项研究探讨了冷却表面的化学改性如何影响液滴的生长和聚结,进而影响液滴的数量如何演化。蒸汽被冷凝到经过硅烷化处理的水平定向表面上,以提供空间均匀的接触角(亲水,疏水)或接触角的连续径向梯度(疏水至亲水)。测量了数密度和相关的液滴尺寸分布的时间演变。对于均匀的表面,液滴尺寸分布的形状是唯一的,可用于识别冷凝过程。相反,相对于均匀表面,梯度表面的液滴大小分布向大量的小液滴移动。液滴的频繁吹扫会截断第一代大液滴的成熟,并将分布形状锁定在初始分布。没有形状变化表明滴状凝结已经达到稳定状态。以前关于化学梯度表面传热增强的报道可以通过向较小液滴的转移来解释,液滴的产生归因于液滴的高传热系数。使用重力作为主要去除机制的地面应用也将从包含梯度表面中受益,因为降低了液滴运动所需的临界阈值大小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号