...
首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Numerical study on the adhesion and reentrainment of nondeformable particles on surfaces: The role of surface roughness and electrostatic forces
【24h】

Numerical study on the adhesion and reentrainment of nondeformable particles on surfaces: The role of surface roughness and electrostatic forces

机译:不可变形颗粒在表面上的附着和重新夹带的数值研究:表面粗糙度和静电力的作用

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the reentrainment of nanosized and microsized particles from rough walls under various electrostatic conditions and various hydrodynamic conditions (either in air or aqueous media) is numerically investigated. This issue arises in the general context of particulate fouling in industrial applications, which involves (among other phenomena) particle deposition and particle reentrainment. The deposition phenomenon has been studied previously and, in the present work, we focus our attention on resuspension. Once particles are deposited on a surface, the balance between hydrodynamic forces (which tend to move particles away from the surface) and adhesion forces (which maintain particles on the surface) can lead to particle removal. Adhesion forces are generally described using van der Waals attractive forces, but the limit of these models is that any dependence of adhesion forces on electrostatic forces (due to variations in pH or ionic strength) cannot be reproduced numerically. For this purpose, we develop a model of adhesion forces that is based on the DLVO (Derjaguin and Landau, Verwey and Overbeek) theory and which includes also the effect of surface roughness through the use of hemispherical asperities on the surface. We first highlight the effect of the curvature radius on adhesion forces. Then some numerical predictions of adhesion forces or adhesion energies are compared to experimental data. Finally, the overall effects of surface roughness and electrostatic forces are demonstrated with some applications of the complete reentrainment model in some simple test cases.
机译:在本文中,数值研究了在各种静电条件和各种流体动力学条件下(在空气或水性介质中)从粗糙壁中重新夹带的纳米级和微米级颗粒。该问题出现在工业应用中的颗粒结垢的一般情况下,这涉及(除其他现象外)颗粒沉积和颗粒重新夹带。先前已经研究了沉积现象,在目前的工作中,我们将注意力集中在重新悬浮上。一旦颗粒沉积在表面上,流体动力(倾向于将颗粒从表面移开)和粘附力(将颗粒保持在表面上)之间的平衡会导致颗粒去除。粘附力通常用范德华吸引力来描述,但是这些模型的局限性在于粘附力对静电力的任何依赖关系(由于pH或离子强度的变化)都无法以数值方式再现。为此,我们开发了一种基于DLVO(Derjaguin和Landau,Verwey和Overbeek)理论的粘附力模型,该模型还包括通过在表面上使用半球形凹凸而产生的表面粗糙度影响。我们首先强调曲率半径对粘附力的影响。然后将粘附力或粘附能的一些数值预测与实验数据进行比较。最后,在一些简单的测试案例中,使用完整的重新引入模型的一些应用,证明了表面粗糙度和静电力的总体影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号