首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Numerical design of microfluidic-microelectric hybrid chip for the separation of biological cells
【24h】

Numerical design of microfluidic-microelectric hybrid chip for the separation of biological cells

机译:用于分离生物细胞的微流微电混合芯片的数值设计

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A miniature microfluidic-microelectric hybrid chip is numerically designed for separation of biological cells, where the characteristic length of the chip is close to the cell radius. A mathematical model is developed to characterize the motion and deformation of a biological cell in the hydrodynamic and nonuniform electric coupled fields, in which the mechanical and dielectric behaviors of the cell are taken into consideration. Subsequently, the model is validated by comparing with the experimental results published previously. By taking a red blood cell (RBC) as the sample of biological cell, the chip structure is numerically designed from the viewpoints of the electrode width, fluid flow velocity, and electric potential, respectively. Using the designed microfluidic-microelectric hybrid chip, the effects of the shape and initial position of the RBC on the separation ability are then analyzed. After that, the separation of the RBCs with the different permittivities or conductivities using the designed chip is simulated, and the deformation behaviors of the RBCs are discussed as well. At the high frequency, the permittivities of the RBCs play a dominant role in the separation of the RBCs, which causes the RBCs moving toward or away from the electrode array. However, the conductivity of the RBC plays a significant role at the low frequency. With suitable suspending fluid therefore, the separation of cells with different permittivities or conductivities can be achieved using the microfluidic-microelectric hybrid chip designed by the present work.
机译:微型微流体-微电混合芯片被数字设计用于分离生物细胞,其中芯片的特征长度接近细胞半径。建立了数学模型来表征生物细胞在水动力和非均匀电耦合场中的运动和变形,其中考虑了细胞的机械和介电行为。随后,通过与先前发布的实验结果进行比较来验证模型。通过将红细胞(RBC)作为生物细胞的样本,分别从电极宽度,流体流速和电势的角度对芯片结构进行了数值设计。使用设计的微流体-微电混合芯片,然后分析了RBC的形状和初始位置对分离能力的影响。然后,模拟了使用设计的芯片分离不同介电常数或电导率的红细胞,并讨论了红细胞的变形行为。在高频下,RBC的介电常数在RBC的分离中起主要作用,这导致RBC向着或远离电极阵列移动。但是,RBC的电导率在低频时起着重要作用。因此,使用合适的悬浮液,可以使用通过本发明设计的微流体-微电混合芯片来实现具有不同介电常数或电导率的细胞的分离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号