首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Stabilization and acidic dissolution mechanism of single-crystalline ZnO(0001) surfaces in electrolytes studied by in-situ AFM imaging and ex-situ LEED
【24h】

Stabilization and acidic dissolution mechanism of single-crystalline ZnO(0001) surfaces in electrolytes studied by in-situ AFM imaging and ex-situ LEED

机译:原位原子力显微镜(AFM)成像和异位LEED研究了单晶ZnO(0001)在电解质中的稳定性和酸性溶解机理

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A combined approach of pH-dependent in-situ AFM topography and ex-situ LEED studies of the stability and dissolution of single-crystalline ZnO(0001)-Zn surfaces in aqueous media is presented. Hydroxide-stabilized and single-cry stalline ZnO(0001)-Zn surfaces turned out to be stable within a wide pH range between I I and 4 around the point of zero charge of pH(PZC) = 8.7 +/- 0.2. Hydroxide stabilization turned out to be a very effective stabilization mechanism for polar oxide surfaces in electrolyte solutions. The dissolution of the oxide surface started at an acidic pH level of 5.5 and occurred selectively at the Ore-existing step edges, which consist of nonpolar surfaces. In comparison, the oxide dissolution along the ZnO(000 1) direction proved to be effectively inhibited above a pH value of 3.8. On the basis of these microscopic observations, the mechanistic understanding of the acidic dissolution process of ZnO could be supported. Moreover, both the in-situ AFM and the ex-situ LEED studies showed that the stabilization mechanism of the ZnO(0001) surfaces changes in acidic electrolytes. At pH values below 3.8, the hydroxide-stabilized surface is destabilized by dissolution of the well-ordered root 3 center dot root 3 center dot R30 hydroxide ad-layer as proven by LEED. Restabilization occurs and leads to the formation of triangular nanoterraces with a specific edge termination. However, below pH 4 the surface structure of the crystal itself is ill-defined on the macroscopic scale because preferable etching along crystal defects as dislocations into the bulk oxide results in very deep hexagonal etching pits.
机译:提出了一种pH依赖性原位AFM形貌与易位LEED研究水介质中单晶ZnO(0001)-Zn表面稳定性和溶解性的组合方法。氢氧化物稳定和单晶的丁烷ZnO(0001)-Zn表面在pH值(PZC)= 8.7 +/- 0.2的零电荷点附近的I到4的宽pH范围内稳定。对于电解质溶液中的极性氧化物表面,氢氧化物稳定化是非常有效的稳定化机制。氧化物表面的溶解始于5.5的酸性pH值,并选择性地发生在矿石存在的台阶边缘,该台阶边缘由非极性表面组成。相比之下,在3.8以上的pH值下,沿ZnO(000 1)方向的氧化物溶解被有效抑制。基于这些微观观察,可以支持对ZnO酸性溶解过程的机理理解。此外,原位原子力显微镜和异位LEED研究均表明,ZnO(0001)表面的稳定机制在酸性电解质中会发生变化。在pH值低于3.8时,如LEED所述,通过溶解有序的根3中心点,根3中心点R30氢氧化物ad-layer溶解,使氢氧化物稳定的表面不稳定。发生再稳定化并导致形成具有特定边缘端接的三角形纳米露台。然而,在pH值低于4时,晶体本身的表面结构在宏观尺度上是不确定的,因为沿着位错进入本体氧化物中的优选沿着晶体缺陷的蚀刻会导致非常深的六角形蚀刻坑。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号