首页> 外文期刊>Nucleic Acids Research >Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations
【24h】

Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations

机译:在不同方向的DNA位点之间进行长距离通讯后,通过ISP型限制性修饰酶进行DNA切割的定位

获取原文
获取原文并翻译 | 示例
           

摘要

The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1-2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of similar to 30 bp.
机译:原核ISP型限制性修饰酶是单链蛋白,包含Mrr家族核酸酶,超家族2解旋酶样ATPase,成色剂域,甲基转移酶和DNA识别域。一旦识别出未修饰的DNA靶位点,解旋酶样结构域水解ATP以引起位点释放(重塑活性),然后驱动下游易位,每碱基对消耗1-2个ATP(运动活性)。在入侵的外源DNA上,在反向(头对头)重复序列中一对靶位点之间进行长时间通讯后,两种易位酶形成所谓的碰撞复合体的地方都会随机引入双链断裂。矛盾的是,碰撞的结构模型表明,核酸酶结构域相距太远(> 30 bp),无法仅通过两个链断裂事件而二聚化并产生双链DNA断裂。在这里,我们研究了不同碰撞复合物的组织以及它们如何导致核酸酶激活。当易位酶与结合在其位点的静态酶碰撞时,我们绘制了DNA裂解图。通过沿头对头和头对尾方向上的位点之间的通讯,我们可以显示运动活性通过解旋酶或MTase-TRD的远距离相互作用导致核酸酶结构域的激活。不需要直接核酸酶二聚。为了帮助解释观察到的切割模式,我们还使用了核酸外切酶足迹技术来证明单个ISP型结构域可以脱离DNA。这项研究为一个模型提供了进一步的支持,在该模型中,由于碰撞复合物的迁移而DNA结合足迹接近30 bp,DNA断裂是由多个随机缺口产生的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号