首页> 外文期刊>Nucleic Acids Research >Improved prediction of RNA secondary structure by integrating the free energy model with restraints derived from experimental probing data
【24h】

Improved prediction of RNA secondary structure by integrating the free energy model with restraints derived from experimental probing data

机译:通过将自由能模型与来自实验探测数据的限制相结合,改进了RNA二级结构的预测

获取原文
获取原文并翻译 | 示例
           

摘要

Recently, several experimental techniques have emerged for probing RNA structures based on high-throughput sequencing. However, most secondary structure prediction tools that incorporate probing data are designed and optimized for particular types of experiments. For example, RNAstructure-Fold is optimized for SHAPE data, while SeqFold is optimized for PARS data. Here, we report a new RNA secondary structure prediction method, restrained MaxExpect (RME), which can incorporate multiple types of experimental probing data and is based on a free energy model and an MEA (maximizing expected accuracy) algorithm. We first demonstrated that RME substantially improved secondary structure prediction with perfect restraints (base pair information of known structures). Next, we collected structure-probing data from diverse experiments (e.g. SHAPE, PARS and DMS-seq) and transformed them into a unified set of pairing probabilities with a posterior probabilistic model. By using the probability scores as restraints in RME, we compared its secondary structure prediction performance with two other well-known tools, RNAstructure-Fold (based on a free energy minimization algorithm) and SeqFold (based on a sampling algorithm). For SHAPE data, RME and RNAstructure-Fold performed better than Se-qFold, because they markedly altered the energy model with the experimental restraints. For high-throughput data (e.g. PARS and DMS-seq) with lower probing efficiency, the secondary structure prediction performances of the tested tools were comparable, with performance improvements for only a portion of the tested RNAs. However, when the effects of tertiary structure and protein interactions were removed, RME showed the highest prediction accuracy in the DMS-accessible regions by incorporating in vivo DMS-seq data.
机译:近来,已经出现了几种基于高通量测序来探测RNA结构的实验技术。但是,大多数结合探测数据的二级结构预测工具都是针对特定类型的实验而设计和优化的。例如,RNAstructure-Fold针对SHAPE数据进行了优化,而SeqFold针对PARS数据进行了优化。在这里,我们报告了一种新的RNA二级结构预测方法,即受约束的MaxExpect(RME),该方法可以合并多种类型的实验探测数据,并基于自由能模型和MEA(最大化预期准确性)算法。我们首先证明RME在完美约束(已知结构的碱基对信息)的基础上大大改善了二级结构的预测。接下来,我们从各种实验(例如SHAPE,PARS和DMS-seq)收集了结构探测数据,并将它们转换为具有后验概率模型的统一配对概率集。通过使用概率分数作为RME中的约束,我们将其二级结构预测性能与其他两个知名工具RNARNA-Fold(基于自由能最小化算法)和SeqFold(基于采样算法)进行了比较。对于SHAPE数据,RME和RNAstructure-Fold的性能优于Se-qFold,因为它们在实验限制下显着改变了能量模型。对于探测效率较低的高通量数据(例如PARS和DMS-seq),被测工具的二级结构预测性能是可比的,仅一部分被测RNA的性能有所提高。但是,当去除三级结构和蛋白质相互作用的影响时,RME通过结合体内DMS-seq数据,在DMS可访问区域显示出最高的预测准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号