首页> 外文期刊>Nucleic Acids Research >Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods
【24h】

Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods

机译:预测p53错义突变的生物学效应的计算方法:三种基于序列分析的方法的比较

获取原文
获取原文并翻译 | 示例
           

摘要

Prediction of the biological effect of missense substitutions has become important because they are often observed in known or candidate disease susceptibility genes. In this paper, we carried out a 3-step analysis of 1514 missense substitutions in the DNA-binding domain (DBD) of TP53, the most frequently mutated gene in human cancers. First, we calculated two types of conservation scores based on a TP53 multiple sequence alignment (MSA) for each substitution: (i) Grantham Variation (GV), which measures the degree of biochemical variation among amino acids found at a given position in the MSA; (ii) Grantham Deviation (GD), which reflects the 'biochemical distance' of the mutant amino acid from the observed amino acid at a particular position (given by GV). Second, we used a method that combines GV and GD scores, Align-GVGD, to predict the transactivation activity of each missense substitution. We compared our predictions against experimentally measured transactivation activity (yeast assays) to evaluate their accuracy. Finally, the prediction results were compared with those obtained by the program Sorting Intolerant from Tolerant (SIFT) and Dayhoff's classification. Our predictions yielded high prediction accuracy for mutants showing a loss of transactivation (similar to 88% specificity) with lower prediction accuracy for mutants with transactivation similar to that of the wild-type (67.9 to 71.2% sensitivity). Align-GVGD results were comparable to SIFT (88.3 to 90.6% and 67.4 to 70.3% specificity and sensitivity, respectively) and outperformed Dayhoff's classification (80 and 40.9% specificity and sensitivity, respectively). These results further demonstrate the utility of the Align-GVGD method, which was previously applied to BRCA1. Align-GVGD is available online at http://agvgd.iarc.fr.
机译:预测错义替代的生物学效应变得重要,因为经常在已知或候选疾病易感基因中观察到它们。在本文中,我们对TP53(人类癌症中最常见的突变基因)的DNA结合域(DBD)中的1514个错义取代进行了3步分析。首先,我们基于TP53多序列比对(MSA)为每种取代计算了两种类型的保守评分:(i)Grantham变异(GV),用于测量MSA中给定位置氨基酸的生化变异程度。 ; (ii)格兰瑟姆偏差(GD),其反映了突变氨基酸与特定位置(由GV给出)上观察到的氨基酸的“生化距离”。其次,我们使用结合GV和GD得分的方法Align-GVGD来预测每个错义替换的反式激活活性。我们将我们的预测结果与实验测量的反式激活活性(酵母分析)进行了比较,以评估其准确性。最后,将预测结果与通过从容忍度分类程序(SIFT)和Dayhoff分类获得的预测结果进行了比较。我们的预测对显示出反式激活损失的突变体具有较高的预测准确性(类似于88%的特异性),而对反式激活的突变体与野生型相似的突变体则具有较低的预测准确性(灵敏度为67.9至71.2%)。 Align-GVGD结果与SIFT相当(特异性和灵敏度分别为88.3至90.6%和67.4至70.3%),并且优于Dayhoff的分类(特异性和灵敏度分别为80和40.9%)。这些结果进一步证明了Align-GVGD方法的实用性,该方法先前已应用于BRCA1。 Align-GVGD可从http://agvgd.iarc.fr在线获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号