首页> 外文期刊>NeuroImage >Stimulating forebrain communications: Slow sinusoidal electric fields over frontal cortices dynamically modulate hippocampal activity and cortico-hippocampal interplay during slow-wave states
【24h】

Stimulating forebrain communications: Slow sinusoidal electric fields over frontal cortices dynamically modulate hippocampal activity and cortico-hippocampal interplay during slow-wave states

机译:刺激前脑通讯:额叶皮层上缓慢的正弦电场在慢波状态下动态调节海马活动和皮层-海马相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

Slow-wave states are characterized by the most global physiological phenomenon in the mammalian brain, the large-amplitude slowoscillation (SO; similar to 1 Hz) composed of alternating states of activity (ON/UP states) and silence (OFF/DOWN states) at the network and single cell levels. The SO is cortically generated and appears as a traveling wave that can propagate across the cortical surface and can invade the hippocampus. This cortical rhythm is thought to be imperative for sleep-dependent memory consolidation, potentially through increased interactions with the hippocampus. The SO is correlated with learning and its presumed enhancement via slow rhythmic electrical field stimulation improves subsequent mnemonic performance. However, the mechanism by which such field stimulation influences the dynamics of ongoing cortico-hippocampal communication is unknown. Here we show - using multi-site recordings in urethane-anesthetized rats - that sinusoidal electrical field stimulation applied to the frontal region of the cerebral cortex creates a platform for improved cortico-hippocampal communication. Moderate-intensity field stimulation entrained hippocampal slow activity (likely by way of the temporoammonic pathway) and also increased sharp-wave ripples, the signature memory replay events of the hippocampus, and further increased cortical spindles. Following cessation of high-intensity stimulation, SO interactions in the cortical-to-hippocampal direction were reduced, while the reversed hippocampal-to-cortical communication at both SO and gamma bandwidths was enhanced. Taken together, these findings suggest that cortical field stimulation may function to boost memory consolidation by strengthening cortico-hippocampal and hippocampo-cortical interplay at multiple nested frequencies in an intensity-dependent fashion. (C) 2016 Elsevier Inc. All rights reserved.
机译:慢波状态的特征是哺乳动物大脑中最普遍的生理现象,由交替的活动状态(ON / UP状态)和静音(OFF / DOWN状态)组成的大振幅慢振荡(SO;类似于1 Hz)在网络和单个单元级别。 SO是皮质产生的,并以行波的形式出现,可以传播穿过皮质表面并侵入海马。这种皮质节律被认为对于依赖于睡眠的记忆巩固是必不可少的,可能是通过增加与海马的相互作用来实现的。 SO与学习相关,其通过缓慢的有节奏的电场刺激进行的推定增强可改善后续的记忆功能。然而,这种场刺激影响正在进行的皮质-海马交流的动力学的机制尚不清楚。在这里,我们展示了-使用氨基甲酸乙酯麻醉的大鼠的多点录音-将正弦电场刺激应用于大脑皮质额叶区域可为改善皮质-海马沟通创造平台。中等强度的电场刺激会引起海马缓慢活动(可能通过颞氨途径),并且还会增加尖波波纹,海马的标志性记忆重播事件,并进一步增加皮层纺锤体。停止高强度刺激后,皮质至海马方向的SO相互作用减少,而SO和γ带宽下海马至皮质的反向交流增强。综上所述,这些发现表明,皮质电场刺激可以通过以强度依赖的方式在多个嵌套频率上增强皮质-海马和海马-皮质相互作用来增强记忆巩固。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号