首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Influence of slow oscillation on hippocampal activity and ripples through cortico-hippocampal synaptic interactions analyzed by a cortical-CA3-CA1 network model
【2h】

Influence of slow oscillation on hippocampal activity and ripples through cortico-hippocampal synaptic interactions analyzed by a cortical-CA3-CA1 network model

机译:皮质CA3-CA1网络模型分析慢振荡对皮质-海马突触相互作用对海马活动和波纹的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hippocampal sharp wave-ripple complexes (SWRs) involve the synchronous discharge of thousands of cells throughout the CA3-CA1-subiculum-entorhinal cortex axis. Their strong transient output affects cortical targets, rendering SWRs a possible means for memory transfer from the hippocampus to the neocortex for long-term storage. Neurophysiological observations of hippocampal activity modulation by the cortical slow oscillation (SO) during deep sleep and anesthesia, and correlations between ripples and UP states, support the role of SWRs in memory consolidation through a cortico-hippocampal feedback loop. We couple a cortical network exhibiting SO with a hippocampal CA3-CA1 computational network model exhibiting SWRs, in order to model such cortico-hippocampal correlations and uncover important parameters and coupling mechanisms controlling them. The cortical oscillatory output entrains the CA3 network via connections representing the mossy fiber input, and the CA1 network via the temporoammonic pathway (TA). The spiking activity in CA3 and CA1 is shown to depend on the excitation-to-inhibition ratio, induced by combining the two hippocampal inputs, with mossy fiber input controlling the UP-state correlation of CA3 population bursts and corresponding SWRs, whereas the temporoammonic input affects the overall CA1 spiking activity. Ripple characteristics and pyramidal spiking participation to SWRs are shaped by the strength of the Schaffer collateral drive. A set of in vivo recordings from the rat hippocampus confirms a model-predicted segregation of pyramidal cells into subgroups according to the SO state where they preferentially fire and their response to SWRs. These groups can potentially play distinct functional roles in the replay of spike sequences.
机译:海马尖波波纹复合体(SWRs)涉及整个CA3-CA1-Subiculum-肠胃皮质层轴上成千上万个细胞的同步放电。它们强大的瞬态输出会影响皮层靶标,使SWR成为从海马到新皮层的记忆转移以进行长期存储的可能手段。在深度睡眠和麻醉过程中,大脑皮层缓慢振荡(SO)调节海马活动的神经生理学观察以及脉动和UP状态之间的相关性支持SWR通过皮质-海马反馈回路在记忆巩固中的作用。我们将表现出SO的皮质网络与表现出SWR的海马CA3-CA1计算网络模型相结合,以对这种皮质-海马相关性进行建模,并发现重要的参数和控制它们的耦合机制。皮质振荡输出通过代表生苔纤维输入的连接夹带CA3网络,并通过颞氨通道(TA)夹带CA1网络。结果表明,CA3和CA1中的峰值活动取决于激发/抑制比,这是通过将两个海马输入与苔藓纤维输入组合来控制CA3群体爆发和相应的SWR的UP状态相关性而产生的,而颞氨输入影响整体CA1峰值活动。波纹的特征和SWR的金字塔形尖峰参与是由Schaffer辅助驱动的力量来决定的。来自大鼠海马体的一组体内记录证实,根据模型预测的锥体细胞根据SO状态优先发射和对SWR的反应的亚组分离。这些组可能在尖峰序列的重播中扮演不同的功能角色。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号