...
首页> 外文期刊>NeuroImage >Multidirectional and Topography-based Dynamic-scale Varifold Representations with Application to Matching Developing Cortical Surfaces
【24h】

Multidirectional and Topography-based Dynamic-scale Varifold Representations with Application to Matching Developing Cortical Surfaces

机译:基于多方向和地形的动态尺度多面体表示及其在匹配发展中的皮层表面中的应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The human cerebral cortex is marked by great complexity as well as substantial dynamic changes during early postnatal development. To obtain a fairly comprehensive picture of its age-induced and/or disorder-related cortical changes, one needs to match cortical surfaces to one another, while maximizing their anatomical alignment. Methods that geodesically shoot surfaces into one another as currents (a distribution of oriented normals) and varifolds (a distribution of non-oriented normals) provide an elegant Riemannian framework for generic surface matching and reliable statistical analysis. However, both conventional current and varifold matching methods have two key limitations. First, they only use the normals of the surface to measure its geometry and guide the warping process, which overlooks the importance of the orientations of the inherently convoluted cortical sulcal and gyral folds. Second, the 'conversion' of a surface into a current or a varifold operates at a fixed scale under which geometric surface details will be neglected, which ignores the dynamic scales of cortical foldings. To overcome these limitations and improve varifold-based cortical surface registration, we propose two different strategies. The first strategy decomposes each cortical surface into its normal and tangent varifold representations, by integrating principal curvature direction field into the varifold matching framework, thus providing rich information of the orientation of cortical folding and better characterization of the complex cortical geometry. The second strategy explores the informative cortical geometric features to perform a dynamic-scale measurement of the cortical surface that depends on the local surface topography (e.g., principal curvature), thereby we introduce the concept of a topography-based dynamic-scale varifold. We tested the proposed varifold variants for registering 12 pairs of dynamically developing cortical surfaces from 0 to 6 months of age. Both variants improved the matching accuracy in terms of closeness to the target surface and the goodness of alignment with regional anatomical boundaries, when compared with three state-of-the-art methods: (1) diffeomorphic spectral matching, (2) conventional current-based surface matching, and (3) conventional varifold-based surface matching. (C) 2016 Elsevier Inc. All rights reserved.
机译:人脑皮质的特征是出生后早期发育过程中的复杂性以及动态变化。为了获得其年龄引起的和/或与疾病相关的皮质变化的相当全面的图像,需要使皮质表面相互匹配,同时使它们的解剖结构最大化。大地上以水流方式将表面彼此投射为电流(定向法线的分布)和波纹(非定向法线的分布)的方法,为普通的表面匹配和可靠的统计分析提供了一个优雅的黎曼框架。但是,常规的电流匹配方法和可变倍数匹配方法都具有两个关键限制。首先,他们仅使用表面的法线来测量其几何形状并引导翘曲过程,这忽略了固有地回旋的皮质沟和回旋褶皱的方向的重要性。其次,将表面“转换”为电流或波纹的操作是在固定比例下进行的,在该比例下将忽略几何表面细节,而忽略了皮质折叠的动态比例。为了克服这些局限性并改善基于静脉曲张的皮层表面配准,我们提出了两种不同的策略。第一种策略是,通过将主曲率方向场整合到变量匹配框架中,将每个皮质表面分解为其法线和切线变量表示,从而提供丰富的皮质折叠方向信息和更好的复杂皮质几何特征。第二种策略探索了信息丰富的皮质几何特征,以根据局部表面地形(例如主曲率)对皮质表面进行动态缩放测量,从而介绍了基于地形的动态缩放杂波的概念。我们测试了提出的可变褶皱变体,以记录12对从0到6个月大的动态发育皮质表面。与三种最先进的方法相比,这两种变体均提高了与目标表面的贴合度以及与区域解剖边界的对准性方面的匹配精度:(1)微晶光谱匹配,(2)常规电流-基于表面的匹配,以及(3)基于传统的基于褶皱的表面匹配。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号