首页> 外文期刊>Nanotechnology >Revealing the toughening mechanism of graphene-polymer nanocomposite through molecular dynamics simulation
【24h】

Revealing the toughening mechanism of graphene-polymer nanocomposite through molecular dynamics simulation

机译:通过分子动力学模拟揭示石墨烯-聚合物纳米复合材料的增韧机理

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

By employing united atom molecular dynamics simulation, we have investigated the effects of polymer-graphene interaction epsilon(np), volume fraction of graphene phi, thermodynamics of polymer matrix (rubbery versus glassy), interfacial interaction in the case of the same dispersion state, shape of nanoparticles (NPs) such as C-60, CNT and graphene at the same loading on the toughening efficiency of polymer nanocomposites. By beginning with the pure polymer, we observe that a plateau stress occurs at long chain length because entangled polymer chains in fibrils cannot become broken. We find that the work needed to dissipate during the failure increases with the increase of epsilon(np) and phi, and the yield point in the stress-strain behavior occurs at a smaller strain for an attractive NPs filled system compared to the pure case, attributed to the more mechanically heterogeneous environment. The thermodynamics of the polymer matrix (below and above T-g) seems to have a significant effect on the toughening efficiency of graphene sheets. In the case of the same dispersion state, stronger interfacial interaction always induces long and highly orientated polymer fibrils along the deformation direction, with graphene sheets being encapsulated in these fiber-like bundles. By characterizing the interaction energy between polymer-polymer and polymer-graphene as a function of the strain, we find that the separation of polymer chains from the graphene sheets cease immediately after the yield point, followed by the continuous propagation of the cavities by excluding surrounded polymer chains and graphene sheets together. We also find that at the same attractive interfacial interaction and same loading, the toughening efficiency exhibits the following order: graphene > CNT > C-60. Generally, the toughening mechanism of graphene sheets results from the formation of long and highly orientated polymer fibrils to prevent the occurrence of the rupture, which can be greatly improved by the strong interfacial interaction and the large surface area compared to CNT and C-60. This also indicates that polymer matrices with high flexibility and mobility of polymer chains tend to be better toughened. It is hoped that this simulation work will provide rational guidance for fabricating high performance of polymer nanocomposites with excellent toughness.
机译:通过采用联合原子分子动力学模拟,我们研究了聚合物-石墨烯相互作用ε(np),石墨烯phi的体积分数,聚合物基质的热力学(橡胶与玻璃态),在相同分散状态下的界面相互作用的影响,纳米粒子(C-60,CNT和石墨烯)在相同载荷下的形状对聚合物纳米复合材料的增韧效率有影响。从纯聚合物开始,我们观察到在长链长度处发生平稳应力,因为原纤维中纠缠的聚合物链不会断裂。我们发现,在失效期间需要耗散的功随epsilon(np)和phi的增加而增加,并且与纯情况相比,对于有吸引力的NPs填充系统,应力应变行为的屈服点出现在较小的应变下,归因于更机械的异构环境。聚合物基体的热力学(T-g以下和以上)似乎对石墨烯片材的增韧效率有重大影响。在相同的分散状态下,较强的界面相互作用始终会沿变形方向诱发长且高度取向的聚合物原纤维,而石墨烯片则被封装在这些纤维状束中。通过表征聚合物-聚合物和聚合物-石墨烯之间的相互作用能作为应变的函数,我们发现,在屈服点之后,聚合物链从石墨烯片的分离立即停止,随后通过排除环聚合物链和石墨烯片在一起。我们还发现,在相同的有吸引力的界面相互作用和相同的载荷下,增韧效率表现出以下顺序:石墨烯> CNT> C-60。通常,石墨烯片材的增韧机理是由于形成了长且高度取向的聚合物原纤维以防止破裂的发生,与CNT和C-60相比,这种牢固的界面相互作用和较大的表面积可以大大改善石墨烯片的韧性。这也表明具有高柔韧性和聚合物链迁移率的聚合物基质倾向于更好地增韧。希望该模拟工作将为制造具有优异韧性的聚合物纳米复合材料提供高性能的合理指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号