...
首页> 外文期刊>Nanotechnology >Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution
【24h】

Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution

机译:溶液中介电膜受控击穿过程中纳米孔制备的动力学

获取原文
获取原文并翻译 | 示例

摘要

Nanopore fabrication by controlled breakdown (CBD) overcomes many of the challenges of traditional nanofabrication techniques, by reliably forming solid-state nanopores sub-2 nm in size in a low-cost and scalable way for nucleic acid analysis applications. Herein, the breakdown kinetics of thin dielectric membranes immersed in a liquid environment are investigated in order to gain deeper insights into the mechanism of solid-state nanopore formation by high electric fields. For various fabrication conditions, we demonstrate that nanopore fabrication time is Weibull-distributed, in support of the hypothesis that the fabrication mechanism is a stochastic process governed by the probability of forming a connected path across the membrane (i.e. a weakest-link problem). Additionally, we explore the roles that various ions and solvents play in breakdown kinetics, revealing that asymmetric pH conditions across the membrane can significantly affect nanopore fabrication time for a given voltage polarity. These results, characterizing the stochasticity of the nanopore fabrication process and highlighting the parameters affecting it, should assist researchers interested in exploiting the potential of CBD for nanofluidic channel fabrication, while also offering guidance towards the conceivable manufacturing of solid-state nanopore-based technologies for DNA sequencing applications.
机译:通过受控击穿(CBD)进行纳米孔制造,通过以低成本和可扩展的方式可靠地形成尺寸小于2 nm的固态纳米孔,从而可用于核酸分析应用,克服了传统纳米制造技术的许多挑战。本文中,研究了浸入液体环境中的薄介电膜的击穿动力学,以便更深入地了解高电场形成固态纳米孔的机理。对于各种制造条件,我们证明纳米孔的制造时间是威布尔分布的,以支持以下假设:制造机理是随机过程,受形成跨膜连接路径的可能性(即最弱连接问题)支配。此外,我们探索了各种离子和溶剂在击穿动力学中​​的作用,揭示了在给定电压极性下,整个膜的非对称pH条件会显着影响纳米孔的制造时间。这些结果表征了纳米孔制造工艺的随机性,并突出了影响其的参数,应有助于对利用CBD进行纳米流体通道制造的潜力感兴趣的研究人员,同时也为可能的固态纳米孔技术的制造提供指导。 DNA测序应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号