...
首页> 外文期刊>Nanotechnology >Transient adhesion and conductance phenomena in initial nanoscale mechanical contacts between dissimilar metals
【24h】

Transient adhesion and conductance phenomena in initial nanoscale mechanical contacts between dissimilar metals

机译:异种金属之间的初始纳米级机械接触中的瞬态粘附和电导现象

获取原文
获取原文并翻译 | 示例
           

摘要

We report on transient adhesion and conductance phenomena associated with tip wetting in mechanical contacts produced by the indentation of a clean W(111) tip into a Au(111) surface. A combination of atomic force microscopy and scanning tunneling microscopy was used to carry out indentation and to image residual impressions in ultra-high vacuum. The ~7 nm radii tips used in these experiments were prepared and characterized by field ion microscopy in the same instrument. The very first indentations of the tungsten tips show larger conductance and pull-off adhesive forces than subsequent indentations. After ~30 indentations to a depth of ~1.7 nm, the maximum conductance and adhesion forces reach steady state values approximately 12 × and 6 × smaller than their initial value. Indentation of W(111) tips into Cu(100) was also performed to investigate the universality of tip wetting phenomena with a different substrate. We propose a model from contact mechanics considerations which quantitatively reproduces the observed decay rate of the conductance and adhesion drops with a 1/e decay constant of 9-14 indentation cycles. The results show that the surface composition of an indenting tip plays an important role in defining the mechanical and electrical properties of indentation contacts.
机译:我们报告了由清洁的W(111)尖端压入Au(111)表面产生的机械接触中与尖端润湿相关的瞬态粘附和电导现象。原子力显微镜和扫描隧道显微镜的结合用于压痕并在超高真空下成像残留印痕。准备了这些实验中使用的〜7 nm半径尖端,并在同一仪器中通过场离子显微镜对其进行了表征。钨头的第一个凹槽比随后的凹槽显示出更大的电导率和剥离粘合力。在〜30nm的深度压痕后,最大电导和粘附力达到稳态值大约比其初始值小12倍和6倍,达到〜1.7 nm。 W(111)烙铁头向Cu(100)的压痕也进行了研究,以研究不同基材的烙铁头润湿现象的普遍性。我们从接触力学的角度出发提出了一个模型,该模型定量地再现了电导率和附着力下降的观察到的衰减率,其衰减系数为9-14个压痕周期的1 / e。结果表明,压痕尖端的表面成分在定义压痕触点的机械和电气性能方面起着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号