...
首页> 外文期刊>Nanotechnology >Low-force AFM nanomechanics with higher-eigenmode contact resonance spectroscopy
【24h】

Low-force AFM nanomechanics with higher-eigenmode contact resonance spectroscopy

机译:具有高本征模接触共振光谱学的低力AFM纳米力学

获取原文
获取原文并翻译 | 示例

摘要

Atomic force microscopy (AFM) methods for quantitative measurements of elastic modulus on stiff (>10GPa) materials typically require tipsample contact forces in the range from hundreds of nanonewtons to a few micronewtons. Such large forces can cause sample damage and preclude direct measurement of ultrathin films or nanofeatures. Here, we present a contact resonance spectroscopy AFM technique that utilizes a cantilevers higher flexural eigenmodes to enable modulus measurements with contact forces as low as 10nN, even on stiff materials. Analysis with a simple analytical beam model of spectra for a compliant cantilevers fourth and fifth flexural eigenmodes in contact yielded good agreement with bulk measurements of modulus on glass samples in the 5075GPa range. In contrast, corresponding analysis of the conventionally used first and second eigenmode spectra gave poor agreement under the experimental conditions. We used finite element analysis to understand the dynamic contact response of a cantilever with a physically realistic geometry. Compared to lower eigenmodes, the results from higher modes are less affected by model parameters such as lateral stiffness that are either unknown or not considered in the analytical model. Overall, the technique enables local mechanical characterization of materials previously inaccessible to AFM-based nanomechanics methods.
机译:用于定量测量硬质(> 10GPa)材料上弹性模量的原子力显微镜(AFM)方法通常需要尖端样品的接触力范围从数百纳牛顿到几微牛顿。如此大的力会导致样品损坏,从而无法直接测量超薄膜或纳米特征。在这里,我们介绍了一种接触共振光谱AFM技术,该技术利用悬臂更高的挠曲本征模式,即使在坚硬的材料上,也能够以低至10nN的接触力进行模量测量。用简单的分析光束模型对符合条件的悬臂的第四和第五挠曲本征模式进行光谱分析,得出的结果与玻璃样品在5075GPa范围内的模量的大量测量结果吻合良好。相反,对常规使用的第一和第二本征模式光谱的相应分析在实验条件下给出了较差的一致性。我们使用有限元分析来了解具有物理逼真的几何形状的悬臂的动态接触响应。与较低的本征模相比,较高模的结果受模型参数(如横向刚度)的影响较小,这些参数在分析模型中是未知的或未考虑的。总体而言,该技术可以对以前基于AFM的纳米力学方法无法获得的材料进行局部机械表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号