...
首页> 外文期刊>Nanotechnology >Carbonization-assisted integration of silica nanowires to photoresist-derived three-dimensional carbon microelectrode arrays
【24h】

Carbonization-assisted integration of silica nanowires to photoresist-derived three-dimensional carbon microelectrode arrays

机译:碳化辅助将二氧化硅纳米线集成到光刻胶衍生的三维碳微电极阵列中

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel technique of integrating silica nanowires to carbon microelectrode arrays on silicon substrates. The silica nanowires were grown on photoresist-derived three-dimensional carbon microelectrode arrays during carbonization of patterned photoresist in a tube furnace at 1000 °C under a gaseous environment of N_2 and H_2 in the presence of Cu catalyst, sputtered initially as a thin layer on the structure surface. Carbonization-assisted nucleation and growth are proposed to extend the Cu-catalyzed vapor-liquid-solid mechanism for the nanowire integration behaviour. The growth of silica nanowires exploits Si from the etched silicon substrate under the Cu particles. It is found that the thickness of the initial Cu coating layer plays an important role as catalyst on the morphology and on the amount of grown silica nanowires. These nanowires have lengths of up to 100 νm and diameters ranging from 50 to 200nm, with 30nm Cu film sputtered initially. The study also reveals that the nanowire-integrated microelectrodes significantly enhance the electrochemical performance compared to blank ones. A specific capacitance increase of over 13 times is demonstrated in the electrochemical experiment. The platform can be used to develop large-scale miniaturized devices and systems with increased efficiency for applications in electrochemical, biological and energy-related fields.
机译:我们提出了一种将二氧化硅纳米线集成到硅基板上的碳微电极阵列的新技术。在图案化的光致抗蚀剂在管式炉中于1000°C,N_2和H_2的气态环境下,在Cu催化剂存在下碳化期间,将二氧化硅纳米线生长在光致抗蚀剂衍生的三维碳微电极阵列上,最初溅射为薄层结构表面。提出碳化辅助的成核和生长以扩展铜催化的纳米线集成行为的汽-液-固机理。二氧化硅纳米线的生长从铜粒子下方的蚀刻硅基板中提取了硅。发现初始Cu涂层的厚度在催化剂上对形态和生长的二氧化硅纳米线的数量起着重要的作用。这些纳米线的长度最大为100μm,直径范围为50至200nm,最初会溅射30nm的铜膜。研究还表明,与空白电极相比,集成纳米线的微电极显着增强了电化学性能。在电化学实验中,比电容增加了13倍以上。该平台可用于开发大型微型设备和系统,提高效率,可用于电化学,生物和能源相关领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号