...
首页> 外文期刊>Nano letters >Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes
【24h】

Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes

机译:低于10 nm金纳米间隙电极的纳米粒子的超低功率电子阱。

获取原文
获取原文并翻译 | 示例
           

摘要

We demonstrate nanogap electrodes for rapid, parallel, and ultralow-power trapping of nanoparticles. Our device pushes the limit of dielectrophoresis by shrinking the separation between gold electrodes to sub-10 nm, thereby creating strong trapping forces at biases as low as the 100 mV ranges. Using high-throughput atomic layer lithography; we manufacture sub-10 nm gaps between 0.8 mm long gold electrodes and pattern them into individually addressable parallel electronic traps. Unlike pointlike junctions made by electron-beam lithography or larger micron-gap electrodes that are used for conventional dielectrophoresis, our sub-10 nm gold nanogap electrodes provide strong trapping forces over a mm-scale trapping zone. Importantly, our technology solves the key challenges associated with traditional dielectrophoresis experiments, such as high voltages that cause heat generation, bubble formation, and unwanted electrochemical reactions. The strongly enhanced fields around the nanogap induce particle transport speed exceeding 10 mu m/s and enable the trapping of 30 nm polystyrene nanoparticles using an ultralow bias of 200 mV. We also demonstrate rapid electronic trapping of quantum dots and nanodiamond particles on arrays of parallel traps. Our sub 10 nm gold nanogap electrodes can be combined with plasmonic sensors or nanophotonic circuitry, and their low-power electronic operation can potentially enable high-density integration on a chip as well as portable biosensing.
机译:我们演示了纳米间隙电极,用于快速,平行和超低功率捕获纳米颗粒。我们的器件通过将金电极之间的间距缩小到10 nm以下,从而突破了介电电泳的极限,从而在低至100 mV范围的偏压下产生强大的俘获力。采用高通量原子层光刻;我们在0.8毫米长的金电极之间制造了10纳米以下的间隙,并将其图案化为可单独寻址的平行电子陷阱。与通过电子束光刻或用于常规介电泳的较大微米间隙电极制成的点状结不同,我们的亚10纳米金纳米间隙电极在毫米级的捕获区域上提供了强大的捕获力。重要的是,我们的技术解决了与传统介电电泳实验相关的关键挑战,例如导致发热,气泡形成和不希望发生的电化学反应的高压。纳米间隙周围的强烈增强的电场引起粒子传输速度超过10μm / s,并能够使用200 mV的超低偏压捕获30 nm的聚苯乙烯纳米粒子。我们还演示了在平行陷阱阵列上快速电子捕获量子点和纳米金刚石颗粒。我们的亚10纳米金纳米间隙电极可以与等离子体传感器或纳米光子电路相结合,其低功率电子操作可以潜在地实现芯片上的高密度集成以及便携式生物传感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号