...
首页> 外文期刊>Macromolecules >Molecular Dynamics Simulations for the Description of Experimental Molecular Conformation, Melt Dynamics, and Phase Transitions in Polyethylene
【24h】

Molecular Dynamics Simulations for the Description of Experimental Molecular Conformation, Melt Dynamics, and Phase Transitions in Polyethylene

机译:用于描述聚乙烯中的实验分子构型,熔体动力学和相变的分子动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Long molecular dynamics simulations of the melt dynamics, glass transition and nonisothermal crystallization of a C-192 polyethylene model have been carried out. In this model, the molecules are sufficiently long to form entanglements in the melt and folds in the crystalline state. On the other hand, the molecules are short enough to enable the use of atomistic simulations on a large scale of time. Two force fields, widely used for polyethylene, are taken into account comparing the simulation results with a broad set of literature experimental data. Although both force fields are able to capture the general physics of the system, TraPPe-UA is in a better quantitative agreement with the experimental data.. According With the simulation results some fundamental aspects of polyethylene physical parameters are discussed Such as the characteristic ratio (C-n = 8.2 and 7.6 at 1500 K, for TraPPe-UA and PYS force fields, respectively), the isothermal compressibility (alpha = 8.57 x 10(-4) K-1), the static structure factor and the Melt dynamics regimes corresponding to an entangled polymer. Furthermore, the simulated T-g (187.0 K) obtained for linear PE is in a very good agreement with the extrapolated T-g values (185-195 K) using the Gordon-Taylor equation. Finally, the simulation of the nonisothermal crystallization process supports the view of a mixed State of adjacent and nonadjacent re-entry model. The simulated two phase model reproduces very well the initial fold length expected for high supercoolings and the segregation of the system in ordered and disordered. layers. The paper highlights the importance Of Combining simulation techniques with experimental data as a powerful means to explain the polymer physics.
机译:进行了C-192聚乙烯模型的熔体动力学,玻璃化转变和非等温结晶的长分子动力学模拟。在此模型中,分子足够长以在熔体中形成缠结并在结晶状态下折叠。另一方面,分子足够短,可以长时间使用原子模拟。考虑了将两个聚乙烯广泛使用的力场,并将模拟结果与大量文献实验数据进行了比较。尽管两个力场都可以捕获系统的一般物理特性,但是TraPPe-UA与实验数据具有更好的定量一致性。根据仿真结果,讨论了聚乙烯物理参数的一些基本方面,例如特性比(分别针对TraPPe-UA和PYS力场,在1500 K时Cn = 8.2和7.6),等温压缩率(alpha = 8.57 x 10(-4)K-1),静态结构因子和熔体动力学机制分别对应于纠缠的聚合物。此外,使用Gordon-Taylor方程得出的线性PE的模拟T-g(187.0 K)与外推T-g值(185-195 K)非常吻合。最后,非等温结晶过程的仿真支持了相邻和不相邻的折返模型的混合状态。模拟的两相模型很好地再现了高过冷所期望的初始折叠长度以及系统的有序和无序分离。层。本文强调了将模拟技术与实验数据相结合的重要性,这是解释聚合物物理学的有力手段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号