...
首页> 外文期刊>Macromolecules >ZnO Nanorod-Thermoplastic Polyurethane Nanocomposites: Morphology and Shape Memory Performance
【24h】

ZnO Nanorod-Thermoplastic Polyurethane Nanocomposites: Morphology and Shape Memory Performance

机译:ZnO纳米棒-热塑性聚氨酯纳米复合材料:形态和形状记忆性能

获取原文
获取原文并翻译 | 示例

摘要

The impact of dispersed alkylthiol-modified ZnO nanorods, as a function of rod aspect ratio and concentration, on the shape memory character of a thermoplastic polyurethane with low hard-segment density (LHS-TPU) is examined relative to the enhanced performance occurring for carbon nanofiber (CNF) dispersion. Solution blending resulted in uniform dispersion within the LHS-TPU of the ZnO nanorods at low volume (weight) fractions (< 2.9% v/v (17.75% w/w)). Tensile modulus enhancements were modest though, comparable to values observed for spherical nanofillers. Shape memory characteristics, which in this LHS-TPU result when strain-induced crystallites retard the entropic recovery of the deformed chains, were unchanged for these low volume fraction ZnO nanocomposites. Higher ZnO loadings (12% v/v (50% w/w)) exhibited clustering of ZnO nanorods into a mesh-like structure. Here, tensile modulus and shape recovery characteristics were improved, although not as great as seen for comparable CNF addition. Wide angle X-ray diffraction and NMR revealed that the addition of ZnO nanorods did not impact the inherent strain induced crystallization of the LHS-TPU, which is in contrast to the impact of CNFs and emphasizes the impact of interactions at the polymer-nanoparticle interface. Overall, these findings reinforce the hypothesis that the shape memory properties of polymer nanocomposites are governed by the extent to which nanoparticle addition, via nanoparticle aspect ratio, hierarchical morphology, and interfacial interactions, impacts the molecular mechanism responsible for trapping elastic strain.
机译:相对于碳的增强性能,研究了分散的烷基硫醇修饰的ZnO纳米棒作为棒长宽比和浓度的函数对低硬段密度(LHS-TPU)热塑性聚氨酯的形状记忆特性的影响纳米纤维(CNF)分散体。溶液共混导致ZnO纳米棒在LHS-TPU中以低体积(重量)分数(<2.9%v / v(17.75%w / w))均匀分散。然而,拉伸模量的提高是适度的,与球形纳米填料观察到的值相当。对于这些低体积分数的ZnO纳米复合材料,形状记忆特性(在此LHS-TPU中由应变诱导的微晶阻碍变形链的熵恢复而产生)不会改变。较高的ZnO负载量(12%v / v(50%w / w))显示ZnO纳米棒聚集成网状结构。在此,虽然不如可比的CNF添加那样大,但拉伸模量和形状恢复特性得到了改善。广角X射线衍射和NMR显示,添加ZnO纳米棒不会影响LHS-TPU固有的应变诱导结晶,这与CNF的影响相反,并强调了聚合物-纳米粒子界面相互作用的影响。 。总体而言,这些发现强化了以下假设:聚合物纳米复合材料的形状记忆特性受纳米颗粒添加的程度(通过纳米颗粒长宽比,层次形态和界面相互作用)影响负责捕获弹性应变的分子机制的程度控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号