首页> 外文期刊>Electrochimica Acta >Co-reduction self-assembly of reduced graphene oxide nanosheets coated Cu2O sub-microspheres core-shell composites as lithium ion battery anode materials
【24h】

Co-reduction self-assembly of reduced graphene oxide nanosheets coated Cu2O sub-microspheres core-shell composites as lithium ion battery anode materials

机译:还原氧化石墨烯纳米片包覆的Cu2O亚微球核壳复合材料的共还原自组装作为锂离子电池负极材料

获取原文
获取原文并翻译 | 示例
           

摘要

Cuprous oxide (Cu2O) sub-microspheres @ reduced graphene oxide (rGO) nanosheets core-shell composites with 3D architecture are successfully fabricated by a one-step method through co-reduction of irregular cupric citrate and graphene oxide nanosheets at room temperature. Comparing to the bare Cu2O sub-microspheres and the simple physical mixture of Cu2O and rGO (Cu2O-rGO-M), the Cu2O@rGO electrodes demonstrate dramatically improved capacity, cyclic stability and rate capability as anode materials for lithium ion batteries. At a low current density of 100 mA.g(-1), Cu2O@rGO electrodes deliver a discharge capacity of 534 mAh.g(-1) after 50 cycles, retaining 94% of the initial capacity. Under a higher current density of 1000 mA.g(-1), Cu2O@rGO electrodes exhibit a discharge capacity of 181 mAh.g(-1) after 200 cycles, approximately 4 times larger than that of bare Cu2O sub-microsphere electrodes. The rate capacity retention of Cu2O@rGO electrode is 74% at 200 mA.g(-1) and 38% at 1000 mA.g(-1) relative to 100 mA.g(-1), much better than that for Cu2O-rGO-M (52% and 34%) and bare Cu2O electrodes (13% and 3%,). The enhanced electrochemical performance for Cu2O@rGO might be ascribed to the rGO coating and 3D architecture. The outer coated rGO nanosheets could provide additional 3D conductive networks as well as serve as the buffer layers for accommodating the large volume change of the inner Cu2O submicrospheres during the charge-discharge cycling. (C) 2015 Elsevier Ltd. All rights reserved.
机译:氧化亚铜(Cu2O)亚微球@还原氧化石墨烯(rGO)纳米片是通过一步法通过在室温下共还原不规则柠檬酸铜和氧化石墨烯纳米片,成功制备出具有3D结构的核-壳复合材料。与裸露的Cu2O亚微球以及Cu2O和rGO的简单物理混合物(Cu2O-rGO-M)相比,Cu2O @ rGO电极作为锂离子电池的负极材料具有显着提高的容量,循环稳定性和倍率性能。在100 mA.g(-1)的低电流密度下,Cu2O @ rGO电极在50个循环后的放电容量为534 mAh.g(-1),保留了初始容量的94%。在1000 mA.g(-1)的更高电流密度下,Cu2O @ rGO电极在200次循环后的放电容量为181 mAh.g(-1),约为裸露的Cu2O亚微球电极的4倍。相对于100 mA.g(-1),Cu2O @ rGO电极在200 mA.g(-1)时的速率容量保持率为74%,在1000 mA.g(-1)时为38%。 -rGO-M(52%和34%)和裸露的Cu2O电极(13%和3%)。 Cu2O @ rGO增强的电化学性能可能归因于rGO涂层和3D体系结构。外部涂覆的rGO纳米片可以提供额外的3D导电网络,并用作缓冲层,以适应充放电循环过程中内部Cu2O亚微球体的大体积变化。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号