...
首页> 外文期刊>Electrochimica Acta >Synergistic effects of high temperature and impact compaction on the nano-TiO_2 film for the significant improvement of photovoltaic performance of flexible dye-sensitized solar cells
【24h】

Synergistic effects of high temperature and impact compaction on the nano-TiO_2 film for the significant improvement of photovoltaic performance of flexible dye-sensitized solar cells

机译:高温和冲击压实对纳米TiO_2薄膜的协同作用,可显着改善柔性染料敏化太阳能电池的光伏性能

获取原文
获取原文并翻译 | 示例

摘要

The electron transport property in TiO_2 film was investigated to understand the significant improvement of the photovoltaic performance of dye-sensitized solar cells (DSCs) by using in situ substrate heating and in situ particle heating approaches through the vacuum cold spraying technology, which accelerates the powder to impact on the substrate surface and form a film. Results showed that the particle connection and thereby electron transport property in TiO_2 film was improved more significantly by in situ particle and substrate heating than by conventional post-sintering of TiO_2 film. An equivalent circuit model was proposed to explain the relationship between the short-circuit current density and electron transport property. The result suggested the existence of synergistic effects of high temperature and impact compaction on the nano-TiO_2 film in vacuum cold spray process. Furthermore, due to the ability of retaining substrate at a low temperature, in situ particle heating approach could be applied to deposit the TiO_2 film for plastic-based flexible solar cells, presenting a high efficiency of 4.4%.
机译:为了了解染料敏化太阳能电池(DSCs)的光伏性能的显着提高,通过使用真空冷喷涂技术采用原位基板加热和原位粒子加热方法来加速TiO_2薄膜的光电传输性能,研究了TiO_2薄膜的电子传输性能。撞击基材表面并形成薄膜。结果表明,与传统的TiO_2薄膜后烧结相比,原位加热颗粒和衬底可以显着改善TiO_2薄膜的颗粒连接,从而改善电子传输性能。提出了等效电路模型来解释短路电流密度与电子传输性能之间的关系。结果表明,在真空冷喷涂过程中,高温和冲击压实对纳米TiO_2薄膜具有协同作用。此外,由于能够在低温下保持基板,可以采用原位粒子加热方法来沉积用于塑料基柔性太阳能电池的TiO_2薄膜,效率高达4.4%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号