...
首页> 外文期刊>Electrochimica Acta >Bi-continuous phases structured nanocomposite polymer electrolytes: Facile preparation and electrochemical properties
【24h】

Bi-continuous phases structured nanocomposite polymer electrolytes: Facile preparation and electrochemical properties

机译:双连续相结构化的纳米复合高分子电解质:简便的制备和电化学性能

获取原文
获取原文并翻译 | 示例

摘要

In this paper, inspired by the cubic bi-continuous gyroid structure self-assembled by block copolymers, we start with the application of a novel and more facile approach, compared to the tedious synthetic procedures of block copolymers, to prepare the bi-continuous phases structured nanocomposite electrolytes. The bi-continuous phase structure is composed of a hard phase of the electrospun poly vinylidene fluoride (PVDF) non-woven scaffold providing the mechanical support for the electrolyte membranes and another soft phase built up then by the infiltration of polyethylene oxide (PEO) electrolyte into the PVDF scaffold membrane to be the ionic conducting phase. Therefore, the nanocomposite polymer electrolytes of the bi-continuous phase structure are prepared with addition of the different amounts of TiO_2 nanoparticles into the PEO electrolyte (containing LiClO_4). The nanocomposite electrolyte membranes have systematically been characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), X-ray diffraction (XRD), and tensile test. The tensile results indicate that the infiltration of PEO phase into the PVDF scaffold can greatly improve the elongation of the electrolyte membrane at break, but the tensile strength of the electrolyte membrane is substantially dependent on the electrospun PVDF scaffold. The ionic conductivity measurements show that addition of TiO_2 nanoparticles with an appropriate amount of ca. 10wt% enhances the ionic conductivity of the nanocomposite electrolytes to 7.60 × 10~(-5) S cm~(-1) at 60℃, compared to 8.33 × 10~(-6) S cm~(-1) at 60℃ of the PEO-LiClO_4 electrolyte. The effect of TiO_2 nanoparticles on the enhancement of Li~+ ion conductivity has been investigated by attenuated total reflectance-Fourier transform infrared spectra (ATR-FTIR), and the results show that a competitive interaction between TiO_2 nanoparticles and Li~+ ions weakens to some extent the existing complexing action of ether-O...Li~+, allowing Li~+ ions faster transfer. However, we have found by high-resolution transmission electron microscopy (HRTEM) that the real dispersion state of TiO_2 nanoparticles in the nanocomposite electrolytes is in the form of large aggregates instead of the individual primary nanoparticles, which would tremendously depress the surface effect of the individual nanoparticles and greatly impact on the enhancement of the ionic conductivity.
机译:在本文中,受嵌段共聚物自组装的立方双连续螺旋状结构的启发,与嵌段共聚物的繁琐合成过程相比,我们从应用新颖,更简便的方法开始制备双连续相结构化的纳米复合电解质。双连续相结构由电纺聚偏二氟乙烯(PVDF)非织造支架的硬相组成,为电解质膜提供机械支撑,而另一软相则通过渗透聚环氧乙烷(PEO)电解质而形成进入PVDF支架膜成为离子导电相。因此,通过向PEO电解质(含有LiClO_4)中添加不同量的TiO_2纳米颗粒,制备了双连续相结构的纳米复合聚合物电解质。纳米复合电解质膜已通过扫描电子显微镜(SEM),差示扫描量热仪(DSC),X射线衍射(XRD)和拉伸试验进行了系统表征。拉伸结果表明,PEO相渗入PVDF支架中可以极大地改善电解质膜的断裂伸长率,但是电解质膜的拉伸强度基本上取决于电纺PVDF支架。离子电导率测量结果表明,添加了适量ca的TiO_2纳米颗粒。 10wt%可使60℃时纳米复合电解质的离子电导率提高到7.60×10〜(-5)S cm〜(-1),而60℃时为8.33×10〜(-6)S cm〜(-1) PEO-LiClO_4电解质的量。通过衰减全反射-傅立叶变换红外光谱(ATR-FTIR)研究了TiO_2纳米颗粒对Li〜+离子电导率的影响,结果表明,TiO_2纳米颗粒与Li〜+离子的竞争作用减弱。醚-O ... Li〜+现有的络合作用在一定程度上使Li〜+离子更快地转移。但是,通过高分辨率透射电子显微镜(HRTEM),我们发现TiO_2纳米粒子在纳米复合电解质中的真实分散状态是大聚集体的形式,而不是单个初级纳米粒子的形式,这将极大地降低纳米粒子的表面效应。单个纳米颗粒,极大地影响了离子电导率的提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号