...
首页> 外文期刊>Cement and Concrete Research >Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags
【24h】

Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags

机译:硅酸盐模量和偏高岭土掺入对碱金属硅酸盐活化矿渣碳化的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Accelerated carbonation is induced in pastes and mortars produced from alkali silicate-activated granulated blast furnace slag (GBFS)-metakaoIin (MK) blends, by exposure to CO_2-rich gas atmospheres. Uncarbonated specimens show compressive strengths of up to 63 MPa after 28 days of curing when GBFS is used as the sole binder, and this decreases by 40-50% upon complete carbonation. The final strength of carbonated samples is largely independent of the extent of metakaolin incorporation up to 20%. Increasing the metakaolin content of the binder leads to a reduction in mechanical strength, more rapid carbonation, and an increase in capillary sorptiviry. A higher susceptibility to carbonation is identified when activation is carried out with a lower solution modulus (SiO_2/Na_2O ratio) in metakaolin-free samples, but this trend is reversed when metakaolin is added due to the formation of secondary aluminosilicate phases. High-energy synchrotron X-ray diffractometry of uncarbonated paste samples shows that the main reaction products in alkali-activated GBFS/MK blends are C-S-H gels, and aluminosilicates with a zeolitic (gismondine) structure. The main crystalline carbonation products are calcite in all samples and trona only in samples containing no metakaolin, with carbonation taking place in the C-S-H gels of all samples, and involving the free Na~+ present in the pore solution of the metakaolin-free samples. Samples containing metakaolin do not appear to have the same availability of Na~+ for carbonation, indicating that this is more effectively bound in the presence of a secondary aluminosilicate gel phase. It is clear that claims of exceptional carbonation resistance in alkali-activated binders are not universally true, but by developing a fuller mechanistic understanding of this process, it will certainly be possible to improve performance in this area.
机译:通过暴露于富含CO_2的气体气氛中,由碱金属硅酸盐活化的高炉矿渣(GBFS)-偏高岭土(MK)混合物制得的糊状物和砂浆中会加速碳化。当将GBFS用作唯一的粘合剂时,未碳化的试样在固化28天后显示出高达63 MPa的抗压强度,而在完全碳化后降低了40-50%。碳酸化样品的最终强度在很大程度上取决于偏高岭土掺入的程度,最高可达20%。粘合剂中偏高岭土含量的增加会导致机械强度的降低,更快速的碳酸化以及毛细管吸附病毒的增加。当在不含偏高岭土的样品中以较低的溶液模量(SiO_2 / Na_2O比)进行活化时,可以确定较高的碳酸化敏感性,但是当添加偏高岭土时,由于形成了第二硅铝酸盐相,这种趋势被逆转了。未碳化的糊状样品的高能同步X射线衍射仪显示,碱活化的GBFS / MK共混物中的主要反应产物是C-S-H凝胶和具有沸石(金刚烷胺)结构的硅铝酸盐。主要的晶体碳酸化产物在所有样品中都是方解石,仅在不含偏高岭土的样品中才是天然碱,所有样品的C-S-H凝胶中都发生碳酸化反应,并且涉及无偏高岭土样品的孔溶液中存在的游离Na〜+。含有偏高岭土的样品似乎没有相同的Na〜+可用于碳酸化,这表明在存在次级铝硅酸盐凝胶相的情况下,Na〜+可以更有效地结合。显然,碱活化的粘结剂具有出色的抗碳化性的说法并非普遍如此,但是通过对这一过程有更全面的机械理解,肯定可以提高该领域的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号