...
首页> 外文期刊>Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics >Dissolution thermochemistry of alkali metal dianion salts (M _2X_1, M = Li~+, Na~+, and K~+ with X = CO_3~(2-), SO_4~(2-), C _8H_8~(2-), and B_(12)H_(12)~(2-))
【24h】

Dissolution thermochemistry of alkali metal dianion salts (M _2X_1, M = Li~+, Na~+, and K~+ with X = CO_3~(2-), SO_4~(2-), C _8H_8~(2-), and B_(12)H_(12)~(2-))

机译:碱金属二价阴离子盐(M _2X_1,M = Li〜+,Na〜+和K〜+的溶解热化学,X = CO_3〜(2-),SO_4〜(2-),C _8H_8〜(2-),和B_(12)H_(12)〜(2-))

获取原文
获取原文并翻译 | 示例
           

摘要

The dissolution Gibbs free energies (ΔG°_(diss)) of salts (M_2X_1) have been calculated by density functional theory (DFT) with Conductor-like Polarizable Continuum Model (CPCM) solvation modeling. The absolute solvation free energies of the alkali metal cations (ΔG _(solv)(M~+)) come from the literature, which coincide well with half reduction potential versus SHE data. For solvation free energies of dianions (ΔG_(solv)(X~(2-))), four different DFT functionals (B3LYP, PBE, BVP86, and M05-2X) were applied with three different sets of atomic radii (UFF, UAKS, and Pauling). Lattice free energies (ΔG_(latt)) of salts were determined by three different approaches: (1) volumetric, (2) a cohesive Gibbs free energy (ΔG _(coh)) plus gaseous dissociation free energy (ΔG_(gas)), and (3) the Born-Haber cycle. The G4 level of theory, electron propagator theory, and stabilization by dielectric medium were used to calculate the second electron affinity to form the dianions CO_3~(2-) and SO _4~(2-). Only the M05-2X/Pauling combination with the three different methods for estimating ΔG_(latt) yields the expected negative dissolution free energies (ΔG°_(diss)) of M _2SO_4. Salts with large dianions like M_2C _8H_8 and M_2B_(12)H_(12) reveal the limitation of using static radii in the volumetric estimation of lattice energies. The value of ΔE_(coh) was very dependent on the DFT functional used.
机译:盐(M_2X_1)的溶解吉布斯自由能(ΔG°_(diss))已通过密度泛函理论(DFT)和类似导体的可极化连续体模型(CPCM)溶剂化模型进行了计算。碱金属阳离子的绝对溶剂化自由能(ΔG_(solv)(M〜+))来自文献,与SHE数据的一半还原电位非常吻合。对于二价阴离子的溶剂化自由能(ΔG_(solv)(X〜(2-))),应用了四个不同的DFT功能(B3LYP,PBE,BVP86和M05-2X)以及三组不同的原子半径(UFF,UAKS)和鲍林)。盐的晶格自由能(ΔG_(latt))通过三种不同的方法确定:(1)体积,(2)内聚的吉布斯自由能(ΔG_(coh))加气态离解自由能(ΔG_(gas)), (3)Born-Haber周期。利用G4能级理论,电子传播理论和介电介质的稳定性来计算第二电子亲和力,从而形成二价阴离子CO_3〜(2-)和SO_4〜(2-)。只有M05-2X / Pauling与三种不同的ΔG_(latt)估算方法组合才能产生M _2SO_4的预期负溶出自由能(ΔG°_(diss))。具有大阴离子的盐,例如M_2C _8H_8和M_2B_(12)H_(12)揭示了在晶格能量的体积估计中使用静态半径的局限性。 ΔE_(coh)的值非常取决于所使用的DFT功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号