首页> 外文期刊>Applied optics >Impact of laser-contaminant interaction on the performance of the protective capping layer of 1 omega high-reflection mirror coatings
【24h】

Impact of laser-contaminant interaction on the performance of the protective capping layer of 1 omega high-reflection mirror coatings

机译:激光污染物相互作用对1Ω高反射镜面涂层保护盖层性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

High dielectric constant multilayer coatings are commonly used on high-reflection mirrors for high-peak-power laser systems because of their high laser-damage resistance. However, surface contaminants often lead to damage upon laser exposure, thus limiting the mirror's lifetime and performance. One plausible approach to improve the overall mirror resistance against laser damage, including that induced by laser-contaminant coupling, is to coat the multilayers with a thin protective capping (absentee) layer on top of the multilayer coatings. An understanding of the underlying mechanism by which laser-particle interaction leads to capping layer damage is important for the rational design and selection of capping materials of high-reflection multilayer coatings. In this paper, we examine the responses of two candidate capping layer materials, made of SiO2 and Al2O3, over silica-hafnia multilayer coatings. These are exposed to a single oblique shot of a 1053 nm laser beam (fluence similar to 10 J/cm(2), pulse length 14 ns), in the presence of Ti particles on the surface. We find that the two capping layers show markedly different responses to the laser-particle interaction. The Al2O3 cap layer exhibits severe damage, with the capping layer becoming completely delaminated at the particle locations. The SiO2 capping layer, on the other hand, is only mildly modified by a shallow depression. Combining the observations with optical modeling and thermal/mechanical calculations, we argue that a high-temperature thermal field from plasma generated by the laser-particle interaction above a critical fluence is responsible for the surface modification of each capping layer. The great difference in damage behavior is mainly attributed to the large disparity in the thermal expansion coefficient of the two capping materials, with that of Al2O3 layer being about 15 times greater than that of SiO2.
机译:高介电常数的多层涂层由于其高的抗激光损伤性而通常用于高峰值功率激光系统的高反射镜上。但是,表面污染物通常会在激光曝光时导致损坏,从而限制了反射镜的使用寿命和性能。改善整体镜抵抗激光损伤(包括由激光污染物耦合引起的激光损伤)的一种可行方法是在多层涂层的顶部涂一层薄的保护性覆盖层(不存在)。理解激光粒子相互作用导致覆盖层损坏的潜在机理对于合理设计和选择高反射多层涂层的覆盖材料非常重要。在本文中,我们研究了二氧化硅-氧化2多层涂层上两种由SiO2和Al2O3制成的覆盖层候选材料的响应。在表面上存在Ti粒子的情况下,将它们暴露于1053 nm激光束的单个斜射(通量类似于10 J / cm(2),脉冲长度14 ns)。我们发现,两个覆盖层对激光粒子相互作用显示出明显不同的响应。 Al2O3覆盖层表现出严重的损坏,并且覆盖层在颗粒位置完全分层。另一方面,SiO 2覆盖层仅通过浅凹陷被适度地改性。将观察结果与光学模型和热/机械计算相结合,我们认为在临界注量以上激光粒子相互作用产生的等离子体产生的高温热场负责每个覆盖层的表面改性。破坏行为的巨大差异主要归因于两种覆盖材料的热膨胀系数差异很大,其中Al2O3层的热膨胀系数约为SiO2的15倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号